
Characteristic length , can select L and R of the PBR , or the radius of the particle Rp

Characteristic velocity ,
can select multiple, f.ex . V&A

, diffusion velocity , reaction rate (instant)
and more

As the system curves varies much with the Z - direction /
'

length of the PBR

we select L as the characteristic length

Assuming the system is convection dominated system , then a good choice for characteristic

velocity is Vz , A

We can easily create a dimensionless variable in the length direction :

{ = ¥ ⇒ dz = L.DE



Inserting the result from lb
, the equations become :
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The boundary conditions become :

at 2=0
,
É=É==0 ⇒✗* =L ,

✗B--0

at 2-=L
, É=E=E=1 ⇒ dd= -1.8¥ --0 ⇒ %¥=0

similarity , %¥=o⇒dd¥-=o

Then :

at 2=0
,
✗a. =L , ✗☐ =D

at -2=1
, ¥; d×.

=

dz
= 0



The coefficients are : ✗ =

☐, ,
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• There are 2 dimensionless coefficients
• Meaning :

✗ : ¥ can be viewed as a diffusion velocity in the length direction
,
and Vz

,, as
the

"

average
" velocity of the bulk liquid .

then ✗ can be interpreted as the ratio between diffusion in the Z -direction and
convection , meaning that for large ×, the mess flux through the reactor is connection controlled
and for small × ,

it's diffusion controlled.

B : ¥,¥- ✗ 4- ,
the residence time of the film

¥
,

a Tc
,
the residence time of the reactor

"

area
" audible for connection¥ =

"

area
" occupied by catalyst particles

≈ Packing parameter

B ✗ ¥7 ratio of residence time in the reactor vs. film
⇒ Large values of P implies that the redolence time of the reactor

is large compared to the redolence time in the film .
This means that

the reaction is limited by the rate of mass transfer in the bulk

through the reactor (diffusion through film
"

appears to be
" instant )

, for low values

of B, the reaction is limited by the diffusion through the stagnant films
surrounding the catalyst particles.

• As we have a binary system ⇒ ✗☐
= I - ✗×

,
and no source terms inside the reactor except for

the reaction
,
we only need to solve one of them .

As the equation for ✗* is independent

of XB , we choose that one.



let ✗ =

↳VZA p =
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Then we can rewrite the equation for ×, :
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This must be discretized to solve numerically :

A. AT - P'B.* = x.flx.it
Where A is the matrix containing the discretization rule for 2nd order derivative,
and B is the matrix containing the discretization rule for the 1st order derivative in exercise 5

.

fsolve needs the answer to the equation to be zero :

A. AT - P'B.* - a - f 1%7=0

However
,
we need to take care of the boundaries , Inserting boundary conditions :

ÉO
,
✗* = I ⇒ Fill) = I => Ñ ( l ) - 1=0

E- = 1
, 8¥ = 0 ⇒ (B. Ia) (N) = 0

The equations using ✗ = 10 and B = 1000
,
which was the values provided during

exercise hour
.



Code bits :

Functions utilized :

Finitedifferencegrid from ex 5 :



Solving the equations :

Plotting the result :

The resulting plot :



Decreasing N seems to yield close to the same results, however N must
be at least 40 for the curve to look smooth However , in task 3, when playing
with values

,
I discovered that N must be a lot higher when increasing a

F.ex ≈ 300 for ✗ = 500
, if not ✗* Will initially increase to be larger than 1 .

The resulting plot makes sense, as at the inlet , where ÉO , ✗a. = 1
,
and

at the outlet
,
2-1=1

,
✗
* has it's lowest value (~ 0 )

keeping ✗ constant , while varying B :

All parameters are visible on the plot



As explained in problem Id , the B-parameter is analogous to the ratio between

the redolence time of the bulk in the reactor , to the recidence time of the film .

This
"

definition " of p agrees with the plot of varying B.

For small values of B ,
the concentration profiles appears to be linear, and they

do not look like they will reach a steady state either as 2-
'
→ 1

Increasing B increases the conversion of A, and the system appears to reach

a
"steady state

"
as 2- increases

.

This is because for small p , the reaction is limited by the diffusion as it takes
a long time for A to diffuse from the bulk to the catalyst particle .

The conversion

of It is therefore slow
,
and a lot of A will not react while passing through the reactor

Increasing B gives the effect of a system that becomes gradually more connection
controlled

, meaning that the diffusion through the stagnant particle film appears to be

almost instant compared to the convection for large enough values of B.
This

,
in turn increases the conversion of A at any point of the reactor,

which is why the slopes for the curves of XA and ✗☐ increases with

increasing B.



As stated in problem 1 d)
,
✗ can be intepreted as the ratio

between the bulk velocity and the diffusion velocity through the reactor

for small values of ✗ , the mass transfer of A and B is diffusion controlled. Meaning
that the flow rate is small . This gives a large redolence time in the reactor

, allowing for more

for It to diffuse to the catalyst surface, which increases the conversion .
This is why the

✗a curve quickly reaches 0 for small values of ✗ .

Increasing ✗ will in turn decrease the redolence time of the reactor, decreasing
the reaction rate

.
As shown in the plot , this allows for A to penetrate

further into the reactor, while also decreasing the total conversion through the reactor
(except for ✗= 10 → ✗ = 100

,
where ✗* = 0 at 2-1=1 in both cases)


