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1 PART 1: MODELING AND SIMULATION

1 Part 1: Modeling and Simulation

This part is the first of three parts of a project within the course TKP4140 - Process Control.
In this part of the report, the modelling and simulation of a continuously stirred tank reactor
(CSTR) will be carried out.

1.1 Project description

The process depicts a CSTR with one inlet stream, q1, and one outlet stream, q2. All the
assumptions for the reactor is described in section 1.2.1. The feed, q1, consists of pure compo-
nent A. In the reactor a second order reactor takes place, see equation (1), consequently the
product stream, q2, consist of A and B. The reaction rate of this reaction is given in equation
(2).

A→ B (1)

r = k · c2A, [kmol/m3·min] (2)

where k is the rate constant, and cA is the concentration of component A in the tank. The
inlet stream, q1, and the outlet stream, q2, are manipulated in order to control the liquid
height in the tank, h, and cA. The inlet concentration, cAf , and the rate constant k cannot
be controlled, and are disturbances in the process. The temperature in the tank, T , is assumed
to be constant by the use of a perfect temperature control controlling the heat supplied to
the system, Q. A sketch of the system is shown in Figure 1.

Figure 1: Sketch of the CSTR modelled in the report

1



1.2 Nonlinear model 1 PART 1: MODELING AND SIMULATION

1.1.1 Classification of variables

The variables in the process can be divided into states (x), inputs (u) ,outputs (y) and
disturbances(d). The list below presents the classification for the system.

• states (x): h, cA

• inputs (u): q1, q2

• outputs (measurements) (y): h, cA

• disturbances (d): cAf, k

The inputs are the MVs that will be manipulated to control the CVs, which are the outputs.

1.2 Nonlinear model

The nonlinear model is derived to describe the behaviours of the system. All assumptions,
the model and steady state data are utilized in the derivation of the nonlinear model.

1.2.1 Assumptions

• T is constant (perfect control using Q is assumed).

• Density (ρ) is assumed constant and equal for all streams.

• Cascade is assumed on the controls, such that q1 and q2 are controlled directly.

• Perfect mixing in the CSTR is assumed. cA,out = cA

• The cross sectional area of the tank, A, is constant.

1.2.2 Model

To describe the process, a mass balance and a component balance will be necessary. The mass
balance for the system can be written as:

dm
dt

= ṁin − ṁout

where dm
dt is the rate of mass accumulation in the tank and ṁin and ṁout are the mass flows

in and out of the system. Using the fact that m = ρV = ρAh, this can be rewritten as follows:

d (ρAh)

dt
= ρ (q1 − q2)

Since ρ and A are assumed constant, they can be moved outside of the derivative.

ρA
dh
dt

= ρ(q1 − q2)

Resulting in the mass balance for the system, given in the following equation:

dh
dt

=
q1 − q2
A

(3)

The component balance can be written as

dnA
dt

= FAf − FA +GA

2



1.2 Nonlinear model 1 PART 1: MODELING AND SIMULATION

where dnA
dt is the rate of accumulation of A in the system, FAf and FA are the molar flows in

and out of the tank, and GA is the amount of A generated or consumed by the reaction. GA

can be expressed as:

GA = rA · V

As A is consumed in the reaction, rA = −r = −k · c2A, then GA is given by:

GA = −k · c2A · V

Inserting into the component balance, the resulting equation is

dnA
dt

= FAf − FA − k · c2A · V

Utilizing that nA = cA · V , FAi = cAi · qi and V = Ah:

d (cA ·Ah)
dt

= q1cAf − q2cA − k · c2A ·Ah

Expanding the derivative, and using that A is constant, the equation can be rewritten

Ah
dcA
dt

+ cA ·A
dh
dt

= q1cAf − q2cA − k · c2A ·Ah

Inserting the derived model equation for the liquid height, eq. (3):

Ah
dcA
dt

+ cA (q1 − q2) = q1cAf − q2cA − k · c2A ·Ah

This is simplified to the model equation for cA

dcA
dt

= (cAf − cA)
q1
Ah
− k · c2A (4)

1.2.3 Steady state calculations

The steady state values q∗2 and c∗A are not known, and need to be calculated. At steady state,
there are no changes. Applying steady state to eq. (3), gives

q∗1 − q∗2
A

= 0

Resulting in

q∗1 = q∗2 = 1kg s−1 (5)

Similarly, applying steady state to the model equation for cA, eq. (4) can then be reformulated
into a quadratic equation:

k∗c∗A
2 +

q∗1
V ∗ c

∗
A −

q∗1
V ∗ cAf = 0

3



1.3 Simulation results 1 PART 1: MODELING AND SIMULATION

Using the quadratic formula to solve the expression, c∗A can be calculated from the resulting
equation

c∗A =
− q∗1

V ∗ ±
√(

q∗1
V ∗

)2
− 4k∗

(
− q∗1

V ∗ cAf

)
2k∗

(6)

Inserting the provided steady state nominal values shown in Table 1, and ignoring the obvi-
ously impossible negaive cA, it is found that

c∗A = 0.05 kmolm−3

The final missing steady sate nominal value is the liquid height h∗, which can be found using
the volume and the area of the tank:

h∗ =
V ∗

A
=

4m3

4m2
= 1m (7)

1.2.4 Steady state data

The steady state values used for the calculations of this process are presented in Table 1.
These values were given in the process description, or calculated in section 1.2.3. The ∗ in
the table indicates that the value is the steady state nominal value.

Table 1: Steady state nominal values, and constants given in the assignment. [1] q∗2 , c∗A and h∗ was calculated
in section 1.2.3.

Variable Description Steady state value Units

V ∗ Volume 4 m3

q∗1 Volumetric inlet flow 1 m3min−1

c∗Af Inlet concentration of A 1 kmolm−3

k∗ Reaction constant 95 m3 kmol−1min−1

q∗2 Volumetric outlet flow 1 m3min−1

c∗A Concentration of A in the tank 0.05 kmolm−3

h∗ Liquid height 1 m

A Area 4 m2

ρ Density 1000 kgm−3

1.3 Simulation results

This system consists of two input variables, q1 and q2, and two disturbances, cAf and k. In
order to study the system, a simulation was performed in MATLAB and Simulink, where a
10% step increase was performed in the input variable or disturbac, while all other inputs or
disturbances was kept constant. The result of the step increases is shown in Figure 2. Where
each column is a step increase in a different input variable or disturbance. The uppermost
row shows what variable was increased, and the resulting graph, the middle row shows the
response of the liquid height, h, and the bottom row shows the response of the concentration
of A in the tank, cA.
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1.4 Steady state gains 1 PART 1: MODELING AND SIMULATION
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Figure 2: Simulation result for a 10% step increase in a single input variable or disturbances, with the
resulting response for the output variables h and cA.

1.4 Steady state gains

The gains for the steady state or intgrating processes were calculated for each step response
of a corresponding input or disturbance. For systems that reached a steady state, the steady
state gain was calculated using the following equation,

k =
∆y

∆u
(8)

while for the integrating processes, the gain, k′, was found using:

k′ =
slope
∆u

(9)

where the slope was found using

slope =
∆y

∆t

on the last 5 datapoints of the simulation. The results from the calculations are presented in
Table 2.

5



1.5 Discussion 1 PART 1: MODELING AND SIMULATION

Table 2: The steady state gain or slope of the responses of the output variables after a 10% increase in an
input variable or a disturbance.

Step change in Output Type Value Unit

q1 h Integrating 0.2500 m−2

q1 cA Integrating -0.0048 kmol/m6

q2 h Integrating -0.2500 m−2

q2 cA Integrating 0.0087 kmol/m6

cAf h Steady state 0 m4/kmol
cAf cA Steady state 0.0250 -
k h Steady state 0 kmol ·min/m2

k cA Steady state −2.39 · 10−4 kmol2·min/m6

1.5 Discussion

As can be seen from Figure 2, a 10% step increase was done. The graphs on the leftmost
part of Figure 2 shows a step increase on q1. As can be seen, these step increases promoted
changes in both the height, h, and the outlet concentration, cA. It is observed that h increases
with q1. This is because the volume in the tank will increase when the mass flow is increased,
but the outflow is kept constant, as can also be seen from eq. (3). The outlet concentration
increased a bit, but then decreased with an increase in q1. The first peak in concentration
has relation to more A being introduced (cAf > cA). However, the outlet concentration then
decreased as h increased. This might be due to the increasing volume, creating more time for
A to be reacted in the tank, and thereby decreasing cA.

From the second row of graphs, a step change on q2 can be seen. Here, an opposite effect on
h, is observed, which makes sense considering the volume will decrease when the outflow is
increased. An increase in cA can also be seen. This is probably due to reactant A having less
time to react in the tank when the outflow is increased.

The third row of figures show a step on the concentration of A in the feed. These results show
that increasing cAf has no effect on the liquid level in the tank (h), as the in- and outflows
are unchanged. However, the concentration of A in the tank will increase instantaneously, as
more of the reactant has been added. It can, however, be seen that the concentration of A in
the tank quickly stabilizes at a higher level.

Lastly, a step on the reaction constant, k, was performed, shown by the rightmost graphs
in Figure 2. As can be observed, a change in k has no effect on the liquid level, h. This is
understandable, as there is no change in q1 or q2. However, it can be seen from the figure that
the step change leads to a drop in cA. This is because the increased reaction constant for the
reaction will result in more of reactant A consumed, leading to a lower concentration of A in
the tank. This means that cA will stabilize on a lower level than before the step change was
performed. This is also consistent with what could be expected from eq. (4).

In conclusion, the responses shown in Figure 2 are explainable and agrees with the assumptions
which were made for this system. Therefore, the simulation of the process seems reasonable.

6



2 PART 2: SYSTEM ANALYSIS

2 Part 2: System Analysis

In this part of the project, a linear model approximation for the system responses will be
analyzed. Furthermore, a simulation of the linearized model will be performed and compared
with the nonlinear responses.

2.1 Linearization

In order to linearize the nonlinear model, we adapt it to fit the standard state-space form as
shown in the following equations:

ẋ = Ax+Bu+ Ed (10a)
y = Cx+Du+Wd (10b)

Where A, B, C, D, E and W are matrices. The vectors for the states, x, inputs, u, distur-
bances d and outputs, y are defined as:

x = [∆h ∆cA]
T

u = [∆q1 ∆q2]
T

d = [∆cAf ∆k]T

y = [∆h ∆cA]
T

For an arbitrary variable ψ, the deviation variable, ∆ψ, is the difference between the current
value and the nominal value:

∆ψ = ψ(t)− ψ∗ (11)

From part 1, using eq. (3) and eq. (4), we define

f1 =
dh
dt

=
q1 − q2
A

(12a)

f2 =
dcA
dt

= (cAf − cA)
q1
Ah
− k · c2A (12b)

Using the 1st-order Taylor expansion, and introducing the deviation variables from eq. (11),
the equations can be rewritten:

d∆h

dt
=
∂f1
∂q1

∣∣∣∣
∗
∆q1 +

∂f1
∂q2

∣∣∣∣
∗
∆q2 (13a)

d∆cA
dt

=
∂f2
∂q1

∣∣∣∣
∗
∆q1 +

∂f2
∂cAf

∣∣∣∣
∗
∆cAf +

∂f2
∂k

∣∣∣∣
∗
∆k +

∂f2
∂h

∣∣∣∣
∗
∆h+

∂f2
∂cA

∣∣∣∣
∗
∆cA (13b)

all terms equal to zero to to a lack of dependency where neglected in the derivation. Calcu-
lating the remaining partial derivatives gives:

7



2.1 Linearization 2 PART 2: SYSTEM ANALYSIS

∂f1
∂q1

∣∣∣∣
∗
=

1

A
=

1

4
= 0.25m−2 (14a)

∂f1
∂q2

∣∣∣∣
∗
= − 1

A
= −1

4
= −0.25m−2 (14b)

∂f2
∂q1

∣∣∣∣
∗
=

(
c∗Af − c∗A

)
Ah∗

=
(1− 0.05)

4 · 1
= 0.2375 kmol (14c)

∂f2
∂cAf

∣∣∣∣
∗
=

q∗1
Ah∗

=
1

4 · 1
= 0.25min−1 (14d)

∂f2
∂k

∣∣∣∣
∗
= −c∗A

2 = − (0.05)2 = −0.0025 kmol2/m6 (14e)

∂f2
∂h

∣∣∣∣
∗
= −

(
c∗Af − c∗A

)
· q∗1

Ah∗2
= −(1− 0.05) · 1

4 (1)2
= −0.2375 kmolm−3min−1 (14f)

∂f2
∂cA

∣∣∣∣
∗
= − q∗1

Ah∗
− 2k∗c∗A = − 1

4 · 1
− 2 · 95 · 0.05 = −9.75min−1 (14g)

By setting eq. (10a) equal to eq. (13), it becomes clear that in order to have the same system
of equations:

A =

 ∂f1
∂h

∂f1
∂cA

∂f2
∂h

∂f2
∂cA

∣∣∣∣∣∣
∗

=

[
0 0

−0.2375 −9.75

]

B =

 ∂f1
∂q1

∂f1
∂q2

∂f2
∂q1

∂f2
∂q2

∣∣∣∣∣∣
∗

=

[
0.25 −0.25

0.2375 0

]

E =

 ∂f1
∂cAf

∂f1
∂k

∂f2
∂cAf

∂f2
∂k

∣∣∣∣∣∣
∗

=

[
0 0

0.25 −0.0025

]

In our system, the states, x, and the outputs, y, are the same, meaning that y = x. In order
for this to be the in the standard state-space form, in eq (10), C must be the identity matrix,
and D = W must be zero-matrices:

C =

[
1 0

0 1

]

D =

[
0 0

0 0

]

W =

[
0 0

0 0

]

8



2.2 Transfer functions 2 PART 2: SYSTEM ANALYSIS

2.2 Transfer functions

In order to find the transfer functions, firstly, the laplace transform of the standard state-
space was taken. The transfer function matrices could then be computed using eq. (15) and
eq. (16). Where I is the 2x2 identity matrix.

G(s) = C · (s · I −A)−1 ·B +D (15)

Gd(s) = C · (s · I −A)−1 · E +W (16)

Inserting the matrices from section 2.1 gives the transfer function matrices. The detailed
calculations can be found in appendix C

G =

[
G11 G12

G21 G22

]
=

 0.25
s

−0.25
s

−6.090·10−3(−4s+1)
s(0.1026s+1)

6.090·10−3

s(0.1026s+1)



Gd =

[
Gd11 Gd12

Gd21 Gd22

]
=

[
0 0

2.564·10−2

0.1026s+1
−2.564·10−4

0.1026s+1

] (17)

2.2.1 Zeros, poles and gains

For each of the transfer functions in G and Gd, the gains, zeros and poles were calculated.
The gains were calculated using eq. (8) and eq. (9), in the same way as in Part 1, looking at
the steady state, or the integrating gain at the end of the simulation. The zeros are all values
of s where the numerator is zero, and the poles are the values of s where the denominator is
zero.

Table 3: Zeroes, poles, and steady state gain of all the G and Gd transfer functions.

Transfer function in Gain Gain unit Zeros Poles Zeroes and poles unit

G11 0.2500 m−2 - 0 [s−1]
G12 −0.2500 m−2 - 0 [s−1]
G21 −0.0061 kmol/m6 0.25 -9.75, 0 [s−1]
G22 0.0061 kmol/m6 - -9.75, 0 [s−1]
Gd11 0 m4/kmol - - [s−1]
Gd12 0 kmol ·min/m2 - - [s−1]
Gd21 0.0256 - - -9.75 [s−1]
Gd22 −2.564 · 10−4 kmol2·min/m6 - -9.75 [s−1]

2.3 Comparison of nonlinear and linearized responses

The equations used to describe the system, eq. (3) and eq. (4) are both non-linear. To see how
the linearized model performed, step increases in the disturbances as well as the manipulated
variables were performed. Both the responses for the non-linear and the linearized models
were plotted together. In Figure 3 the responses to step increases in the manipulated variables
are presented. In Figure 4 the responses to the disturbances are plotted.

From Figure 3 and Figure 4, it is apparent that the linearized model is quite a good approx-
imation, being exact for the relations to h. However, for the reponses in cA, the linearized
model deviates from the non-linear model.

9



2.4 Half-rule approximation of G 2 PART 2: SYSTEM ANALYSIS

0 10 20

Time [min]

1

1.05

1.1

q
1
 [

m
3
/m

in
]

Step on q
1

0 10 20

Time [min]

0.5

1

1.5
h
 [

m
]

non-linear

linearized

0 10 20

Time [min]

0.04

0.06

c
A

 [
k
m

o
l/

m
3
]

non-linear

linearized

0 10 20

Time [min]

1

1.05

1.1

q
1
 [

m
3
/m

in
]

Step on q
2

0 10 20

Time [min]

0.5

1

1.5

h
 [

m
] non-linear

linearized

0 10 20

Time [min]

0.04

0.06

c
A

 [
k
m

o
l/

m
3
]

non-linear

linearized

Figure 3: Simulation result for a 10% step increase in a single manipulated variable, with the resulting
response for the output variables h and cA both in the non-linear and linear models
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Figure 4: Simulation result for a 10% step increase in a single disturbance, with the resulting response for
the output variables h and cA both in the non-linear and linear models

2.4 Half-rule approximation of G

Looking at the different transfer functions in G, three of them are already first order. However,
G21 and G22 are second order transfer functions:

G21(s) =
−6.090 · 10−3 (−4s+ 1)

s (0.1026s+ 1)

G22(s) =
6.090 · 10−3

s (0.1026s+ 1)
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In order to approximate them to a first order transfer functions, the half-rule is used [2]. The
largest neglected time constant from the denominator is distributed evenly across the time
delay and the smallest retained time constant. A first order transfer function is wanted, and
the smallest of the factors in the denominator must be neglected. For G21, Assuming that we
can approximate:

1

s
≈ lim

t→∞

τ1
τ1s+ 1

then the factor 1
s should be kept, with a time constant of ∞. Then:

θ = θ0 + T1 +
τ2
2

= 0 + 4 +
2

34
=

69

17

τI = θ1 +
τ2
2

=∞+
2

34
=∞

Where the exact value for τ2 = 4
39 was reintroduced. The half rule approximation becomes:

G21(s) ≈ −6.090 · 10−3 · e
− 69

17
s

s

To test the approximation, the half-rule approximation was tested against the linearized
transfer function, using the step-function in MATLAB. The result is shown in Figure 5. It is
clear from the graphs that the half-rule is a valid approximation, as the graphs are perfectly
aligned, except for the delay at the beginning.

Figure 5: Simulation result of a step response in the linearized transfer function G21 and it’s half rule
approximation

For G22, the process is almost the same, except for that there is no time constant in the
numerator. The delay is approximated as:

θ = θ0 +
τ2
2

= 0 +
2

34
=

2

34

Resulting in:

G22(s) ≈ 6.090 · 10−3 · e
− 2

34
s

s
(18)
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In Figure 6, the result of a step response comparing the responses of the half-rule and the
linearized model is shown. The half-rule is very exact, and it is necessary to zoom in a lot in
order to tell them apart.

Figure 6: Simulation result of a step response in the linearized transfer function G22 and it’s half rule
approximation

2.5 Discussion

2.5.1 Properties of the transfer functions

The properties determining the behaviour of the responses of the transfer function are gains,
poles and zeros.

The gains for the linearized transfer functions that completely matched the non-linear model,
had the same gain as the results from the non-linear simulations had. This was all of the
transfer functions related to the liquid height. Which makes sense as the partial derivative of
model equation for the liquid height with regards to the MVs and DVs is constant, meaning
that the non-linear model had a linear coherence, so it was expected that the linear model of
these responses would be exact.

The transfer functions that did not completely match, which was the transfer functions re-
lated to cA, got different gains than the non-linear simulations, however, the gains from the
linearized model were close. The reason for this is that in the model equation for cA, the
derivatives of the inputs and disturbances are not constant, and varies with either (or both)
the liquid height and ca, as well as other inputs, either through the liquid height h or directly
from the cA terms. Creating a non-linear response, meaning that the linearization introduces
errors.

The only zero, for G21 were positive, which corresponds to an inverse response. This can be
seen in Figure 3.

The poles were either 0 or negative, this corresponds to stable, non-oscillating responses.
Which from the plots, appears to be the case.

2.5.2 Linearization

A plot of step responses for the non-linar and the linearized model can be seen in Figure 3
and Figure 4. From the figures, it is easy to see that the linearized model is perfectly able to
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simulate the respones of the liquid height h, as the lines completely overlap. This was to be
expected, as the non-linear equation for dh

d is of the first or zeroth order for all MVs and DVs.

However, when modelling cA, the linearized model was not quite as good. For the responses in
the inlet and outlet flows, q1 and q2 respectively, the linearized model is quite good at a short
time interval after the step increase, but with an increasing deviaition as time progresses. The
biggest deviation occurs for a step increase in q2, as q2 is not directly in the model equation
for cA, but indirectly through h. Which is why the linearized model for cA performs poorly
on the step increase in q2.

For the step increases of the disturbances, modelling the response in cA, the model performs
quite well. There is a tiny difference in the steady state value, most likely caused by the
tiny difference in the gain, however, this difference is small, and it can be concluded that the
linearization performs adequately.

The linearized model performs well except for the response in cA for increases in q1 and q2
where the deviation increases as time progresses. The response from part 1 is non-linear,
therefore, the linear model introduces an error. As the response is a combination between an
integrating and first order process, this error will increase with time.

2.5.3 Half-rule

There were only two transfer functions in the transfer function matrix G that had a higher
order than 1. Therefore only G21 and G22 had to be approximated using the half rule.

From Figure 5 and Figure 6 it is clear from the graphs that the half-rule are a valid approxima-
tions, as the graphs are close to being perfectly aligned, except for the delay at the beginning
of the G21 transfer function, but as this is an inverse response, the half-rule approximation is
actually better with regards to tuning.

13



3 PART 3: CONTROLLER DESIGN

3 Part 3: Controller Design

This part of the project will use the linearized models found in part 2 to find and discuss
design of the controllers. It will also include an application to the nonlinear process.

3.1 Control structure

Propose a control structure:

The system discussed in this report is a multiple input, multiple output (MIMO) system. This
is because the system has two inputs (q1, q2) and two outputs (h, cA). As can be seen from
figure 3, the control pairings can be based on the scaled gain in the outputs when the inputs
are increased. When pairing, it is ideal if the effect which the inputs have on the outputs will
increase with increasing scaled gain for the outputs.

Based on this, and the trends shown in figure 3, q1 was paired with h and q2 was paired with
cA. A process matrix displaying these pairings are shown in figure 7.

Figure 7: Process matrix for the MIMO system.

The selected pairings are:

q1 ←→ h

q2 ←→ cA

Where the selection was done mainly based based on the scaled gain in the output variables,
when increasing the inputs, as seen in Figure 3. As both MVs have the same (but opposite)
influence on h, the pairing was based on which MV that affected cA most, which was q2. As
the pairing when MVs have a big effect on the CVs gives a more ideal control structure.

A block diagram was also drawn for the proposed control structure, which is displayed in
Figure 8.
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3.2 Controller tuning 3 PART 3: CONTROLLER DESIGN

Figure 8: Block diagram representing the behaviour of the model and connecting the inputs and outputs.

A block diagram describes how the model responds to different inputs and changes. As can
be seen from Figure 8, when a step change is made in the concentration CA, it has close to
no effect on the liquid height. This means that the transfer function G12 ≈ 0. However, it
can be seen from the block diagram that the block diagrams for the liquid height and the
concentration output are linked by G12 and G21. This means that a step change on the liquid
height will have some effect on the concentration output, which is accurate for this model.

3.2 Controller tuning

From the selection of the pairings, the controls were tuned for the transfer functions G11 and
G22, shown in eq. (17). However, as none of these transfer functions are of the first order,
they will require some special treatment.

G22 is an integrating system with an extra pole. A first order approximation of G22 was
found using the half-rule, as shown in eq. (18). This approximation will be used instead of
the integrating transfer function with the extra pole, in order to find a time delay. This allows
us to use the SIMC-rules for PI-controllers. However, as both of the transfer functions are
integrating responces, the “standard” SIMC-rules cannot be used.

The SIMC tuning rules for integrating responses are:

Kc =
1

k′
1

τc + θ
(19)

τI = 4(τc + θ) (20)

Where k′ is the calculated gain for integrating response as shown in section 1.4.

The τc is the closed loop time constant, and it is selected based on how fast we want the loop
to respond. Usually, for tight control, τc = θ, is selected. As G11 does not have a delay, τc is
free to be chosen. τc should be chosen such that it is smaller or larger than τc for G11. This is
due to the fact that one τc needs to be faster than the other, in order for them not to “fight”
each other, creating an unstable system. Furthermore, the height control has an immediate
response, whereas the concentration control has a delay, meaning the height response should
intuitively be faster. Therefore, τc for G11 is chosen in this report to be five times smaller
than τc for G22:
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3.3 Simulations 3 PART 3: CONTROLLER DESIGN

τc,G11 =
1

5
· τc,G12

However, selecting tight control did not provide a well tuned controller, instead, τc,G12 = 25 ·θ
was selected, as this provided better performance. The resulting tuning parameters are shown
in Table 4.

Table 4: Tuning paramteters for the PI-controllers used in the simulation.

Transfer function τc Kc τI

G11 1.471/5 13.60 1.177
G22 1.471 107.4 6.118

The controller transfer function for PI-controllers which was implemented in Simulink, is
shown below

c(s) = Kc
τIs+ 1

τIs
(21)

3.3 Simulations

In order to test the controls, simulations were carried out with a 10 % step increase in the
disturbances and the setpoints of the states. The results of the simulations with controllers
are presented in the figures below.
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Figure 9: Simulation result of a 10 % step increase in the setpoints of the states, with implemented PI-
controller tuned using the SIMC-rules.
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Figure 10: Simulation result of a 10% step increase in the disturbances, with implemented PI-controller
tuned using the SIMC-rules.

3.3.1 Integral Absolute Error

The integral of absolute error, IAE, is the integration of the error of the states compared to
their setpoints, integrated over the simulation time. IAE is a performance index that can be
used to evaluate controllers. The IAE for the step increases can be found in Table 5

Table 5: The IAE for the responses of the controllers for setpoint increases and step increases in the distur-
bances.

Change description IAE for h-controller IAE for cA-controller

Setpoint increase in h 0.0162 0.0101
Setpoint increase in cA 0.0180 0.0109

Step change in cAf 0.0080 0.0049
Step change in k 0.0083 0.0050

Even though the IAE for CA and h cannot be compared, it may be used as an indicator for
the quality of each of the two controllers.

3.4 Bode plot

A bode plot was drawn for the height-inlet flow controller. The closed loop transfer function
for this controller is defined as:

L(s) = c1 ·G11

= 13.60
1.177s+ 1

1.177s
· 0.25
s

= 2.889
1.177s+ 1

s2

(22)

The resulting bode plot from L is shown in Figure 11
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Figure 11: The bode plot of the closed loop transfer function for the pairing q1 ←→ h with asymptotes drawn
in red.

From the bode plot, it can be observed that there is only one zero, which is at approximately
ω = 0.85. The poles are not visible on the plot, as they are 0. This is the reason for the
steeper downward slope for the magnitude (-2 for the log-log plot), and the phase beginning
at −180◦

3.4.1 Margins

By applying polar form rules to the transfer function in eq. (22), the following expression were
used to calculate the magnitude and the phase respectively:

|L(jω)| = 2.889

√
1.1772ω2 + 1

ω2

∠L(jω) = −180◦ + arctan(1.177ω)

From these equations, ωc = 0 and ω180 = 3.499. From these values, the margins could be
calculated:

• Gain margin: ∞ (θ = 0)

• Phase margin: 76.32◦ = 1.33 rad

• Time delay margin: 0.38 s
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3.5 Discussion 3 PART 3: CONTROLLER DESIGN

And we can see that the calculated values coincide with the values from the bode plot shown
in Figure 11.

3.5 Discussion

3.6 Observed closed loop responses

Figure 9 and Figure 10 shows the responses of the proposed control structure. The quality
of the control structure may then be discussed based on these figures. As can be observed,
the controller was able to counteract the step changes made in both inputs (q1, q2) and both
outputs (h, cA).

In Figure 9, the responses when performing a step point change on the output variables are
shown. As can be seen, the three figures on the left shows the responses when a step change
is made in h. As can be seen from the graphs, h, cA, q1 and q2 all quickly adapt to the
new setpoint. It is, however, important to notice that the response for q2 is negative in the
first oscillation. This seems impossible, as the flowrate cannot be negative. Nevertheless, in
a real system, this would only mean that q2 is saturated, and this would be controlled by
anti-windup. Furthermore, it is not a large negative value, which means the results may still
be feasible. Aside from this, the h-controller is, based on the responses, a good controller. All
the variables reach the new setpoint quickly and does not oscillate.

The graphs on the right side in Figure 9 displays the responses when a setpoint increase in
cA is performed. It can be seen that there is slightly more delay for cA than for h, which is
logical as τc for this controller is 5 times larger than for h. Furthermore, it is necessary that
the concentration tuning is a bit slower than the height tuning in order to avoid unwanted
interaction between the two controllers. All variables also reach the new setpoint fairly quickly
with the concentration tuning, which suggests that this tuning is good. As can be seen from
the cA response for the cA setpoint increase in Figure 9, it doesnt’s seem to quite reach the
setpoint within the same time as the other variables. However, this difference to the setpoint
is considered to be negligible, as the y-axis for this variable is much smaller than for the other
variables.

Figure 10 shows the closed-loop behaviour when making a 10 % step increase in the distur-
bances, cAf and k. From these responses, it can also be observed that all variables adapt to
the new setpoint value fairly quickly and without much oscillation. This suggests that the
controller works well. From the graphs on the left, it can be observed that when making a
step change in cAf , cA increases. This is reasonable, as initial concentration will have this
effect on cA. To compensate for the increase in cA, q2 decreases. Consequently, the height
also increases quickly. It can be seen that q1 decreases in order to compensate for the increase
in h. The system then stabilizes.

On the right part of Figure 10, a step change on the reaction constant, k, was made. Under-
standably, the concentration of A will decrease when the reaction constant is increased. This
is due to the fact that more of reactant A will be consumed when k is increased. Then, q2
will increase to compensate for the decrease in concentration. When q2 is decreased, a spike
in h is also observed. To compensate for this, q1 will decrease before the system then quickly
stabilizes at the new setpoint.

Overall, both the h-controller and the k-controller can be concluded to be well working con-
trollers. All variables quickly adjust to the new setpoints, both when a step increase is
performed on the output variables and on the disturbances.

3.7 Controller performance

The IAE values for CA and h from the simulation were presented in Table 5. As can be seen
for the h-controller, the IAE values were small but positive for all changes. The IAE values
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being so small indicates that the h-controller works well for these changes. The controller is
fast, and as can be seen from the step change responses, all variables quickly return to the new
setpoints. It can be seen that the setpoint increase in cA creates a slightly larger IAE than
for the step change in cAf . This means that the h-controller performs better for step changes
on the disturbance than the setpoint change on outputs. The IAEs being small can also be
understood from Figure 9 and Figure 10, where it can be seen that a change in concentration
does not have a large impact on the height. As can be seen, this is confirmed from the fact
that the IAE for the setpoint increase in h is also larger than the IAE for the step change in
k.

The IAEs for the cA-controllers are also compared in Table 5. Here, it can also be seen that
the controller performes better when counteracting the changes in disturbance than for the
setpoint changes for the outputs. However, all the IAEs are small also for this controller,
meaning that the controller is well suited for these changes.

In Figure 9, for the response in a setpoint increase in h, we can see that q2 becomes negative,
which is not realistic for this system. In a more realistic set-up. The controller would have
saturated when the valve was fully closed, and anti-windup would have to be implemented.
However, in this project, this was not part of the assignment.

To conclude, both the h-controller and the cA-controller have sufficient tuning parameters.
This can be seen from the fact that the IAEs are small. Furthermore, it can be seen from the
simulated graphs for the responses. There are little observed oscillations and overshoots for the
responses. As can be observed, all outputs return to the desired values as well. Nevertheless,
it can be concluded that the controllers work slightly better at counteracting disturbances
than setpoint changes on the outputs.

3.8 Bode plot

The bode plot, shown in Figure 11, is done for the feedback loop, as well as for the tunings.
As can be seen from this plot, the asymptotes are good fits. This indicates that the frequency
window is large enough for the bode plot to have time to respond to fit the asymptotes.

As was shown, the gain margin goes to zero. Furthermore, the phase margin is found to be
1.33 rad. This indicates how much the phase can be shifted before the system gets unstable.

4 Final discussion

In this project, the necessary steps to tune a CSTR-reactor with a perfect temperature control
was performed. This was done in three main parts. In part 1, a non-linear model of the system
was derived, and simulations was performed on the model to test how changes in inputs and
disturbances would affect the system. The system responses were sensible, as for example,
changes in the feed consentration or the reaction constant did not affect the level in the tank.

In part 2, a linear approximation of the model was found, and analyzed. It was found that
for the most part, the linear model gave good approximations, except for responses in cA for
input changes, where the linearized model showed an increasing deviation from the non-linear
model as time progressed. Due to the responses not being linear in the non-linear model.

In part 3 the pairings of MVs and CVs were found using the results from part 1 and part
2. The pairings were used to create controllers for the system. Tuning parameters for PI-
controlles were obtained from the linearized model using the SIMC-rules. Then the model
was simulated, and tested for disturbances, and set-point increases. The responses and IAE
values verified the control parameters which were calculated.

In conclusion, it was found that the controllers work well for this system, with the exception
of q2 being negative for one of the responses. In the real world, this would be fixed with
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anti-windup, and should not be much of an issue. The fact that the controllers (mostly) work
well means that the system was modelled, and controlled properly through the analyses and
simulations which were performed throughout the three parts. The results were verified by
observing the responses.

4.1 Additional feedback

This project has helped create a better understanding for the entire course, by combining
different parts of the curriculum and applying them to a problem. The teaching assistants
provided valuable help, and insight for solving the project tasks.

For next year, it might be beneficial if the teaching assistants have “the solutions” for the
project, for example, the equations and gains for the non-linear model, the transfer functions,
gains, poles and zeroes for the linearized model, and tuning parameters for the tuning, as well
as all graphs we were expected to create. Most of the assignments were unique, and it would
benefit everyone if the teaching assistants would have some extra material, on each problem
so that they could help us more efficiently, by verifying if the students were doing the tasks
correctly.

Furthermore, the project was a great learning experience. However, when the report is not
graded, as in previous years, it becomes more like an exercise. It would therefore maybe be
beneficial if there was a pause in the regular exercises in the same weeks as the projects. If
not, this subject becomes very large.
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A MATLAB SCRIPTS PART 1 & 2

A Matlab scripts part 1 & 2

The following MATLAB scripts were used to simulate the step increases and calculate the
gains for part 1 and 2 (with the exception of a few changes in the plotting to create the plots
in part 2.)

A.1 Simulation

Listing 1: The code in the file Simulation.m used to simulate the step increases and calculate the gains in
part 1 and 2

% TKP4140 Process Control Project
%% Example script showing how to run the Simulink model
% Example script that:
% - calls the computeTransferFunctions function
% - runs the Simulink model
% - plots the results

warning off
clc
clear
close all

%% Set default options for plotting. You can change this to your preferences
set(0,'DefaultTextFontName','Times',...
'DefaultTextFontSize',18,...
'DefaultAxesFontName','Times',...
'DefaultAxesFontSize',18,...
'DefaultLineLineWidth',2,...
'DefaultLineMarkerSize',5)

%% Initializing

%Compute the transfer functions
[G,Gd]=computeTransferFunctions; %Get G and Gd from computeTransferFunctions

%Model parameters
A=4; %area of the tank in m^2
p = [A]; % vertical vector with model parameters. This is used in Simulink

% Nominal values for u and d.
% These will go to the Workspace and will be used in the "nominal u" and
% "nominal d" blocks.
q1_nom = 1;
q2_nom = 1;
caf_nom = 1;
k_nom = 95;

% The vectors that get sent to the simulink simulation
u_nom=[q1_nom;q2_nom];
d_nom=[caf_nom;k_nom];

% Define the number of variales and model parameters
% These are used in the Interpreted Matlab Fcn block in Simulink
Nx = 2; %--CHANGE HERE-- number of states--NUMBER OF DIFFERENTIAL EQUATIONS
Nu = 2; %--CHANGE HERE-- number of inputs--NUMBER OF MVS
Nd = 2; %--CHANGE HERE-- number of disturbances--NUMBER OF DVS
Np = 1; %--CHANGE HERE-- number of model parameters--CONSTANT VALUES
Ny = Nx;% Do not change--number of outputs---equal to number of states

%INITIAL CONDITIONS FOR THE STATES
%Set the initial conditions you found for every state.
%These intial conditions will be used to solve the differential equations.
x0 = [1;1/20]; % [h;cA]
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%% Set the time for giving the steps
u_t_step = 1; % In the "q0 increase" block, the step time will be set to 1.
d_t_step = 1; % In the "q1 increase" block, the step time will be set to 1.

%% Set simulation time
tsim = 20; % same units as your model

%% Step in q1
% Simulating a 10% increase in q1:
q1_step=0.1*q1_nom;
q2_step=0;
k_step=0;
caf_step=0;
% Inserting updated values into step-vectors, which are sent to simulink
u_step = [q1_step;q2_step];
d_step = [caf_step;k_step];

%run Simulink model to test the step
sim('SimulinkPart2')

figure(1)
subplot(321)
plot(time,u(:,1),'blue')
title('Step on q_1')
ylabel('q_1 [m^3/min]')
xlabel('Time [min]')
ylim([0.995, 1.105]);

figure(1)
subplot(323)
plot(time,x(:,1),'red')
hold on
plot(time,ylinear(:,1),'black', LineStyle='--')
legend('non-linear','linearized','Location','southeast')
ylabel('h [m]')
xlabel('Time [min]')
ylim([0.5,1.5]);
hold off

figure(1)
subplot(325)
plot(time,x(:,2),'red')
hold on
plot(time,ylinear(:,2),'black', LineStyle='--')
legend('non-linear','linearized','Location','northeast')
ylabel('c_A [kmol/m^3]')
ylim([0.04, 0.07]);
xlabel('Time [min]')
hold off

% Finding the slope, integrating process eq(9)
%delta u
du_q1 = 0.1*q1_nom;
%delta h
dh_q1 = x(end,1) - x((end-4),1);
dh_q1_linear = ylinear(end,1) - ylinear((end-4),1);
%delta ca
dcaq1 = x(end,2) - x((end-4),2);
dcaq1_linear = ylinear(end,2) - ylinear((end-4),2);
%delta t
dtq1 = time(end) - time(end-4);

%calculating the gain of h
h_slopeq1 = dh_q1/dtq1;
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h_gain_q1 = h_slopeq1/du_q1;
h_slopeq1_linear = dh_q1_linear/dtq1;
h_gain_q1_linear = h_slopeq1_linear/du_q1;

%calculating the gain of ca
ca_slopeq1 = dcaq1/dtq1;
ca_gain_q1 = ca_slopeq1/du_q1;
ca_slopeq1_linear = dcaq1_linear/dtq1;
ca_gain_q1_linear = ca_slopeq1_linear/du_q1;

%Printing the result
disp('For an increase in q1:')
fprintf('The non-linear gain in h is: %1.4f \n', h_gain_q1)
fprintf('The linearized gain (G_11) in h is: %1.4f \n', h_gain_q1_linear)
fprintf('The non-linear gain in cA is: %1.4f \n', ca_gain_q1)
fprintf('The linearized gain (G_21) in h is: %1.4f \n\n', ca_gain_q1_linear)

%% Step in q2
% Simulating a 10% increase in q2:
q1_step=0;
q2_step=0.1*q2_nom;
k_step=0;
caf_step=0;
% Inserting updated values into step-vectors, which are sent to simulink
u_step = [q1_step;q2_step];
d_step = [caf_step;k_step];

%run Simulink model to test the step
sim('SimulinkPart2')

figure(1)
subplot(322)
plot(time,u(:,2),'blue')
title('Step on q_2')
ylabel('q_1 [m^3/min]')
xlabel('Time [min]')
ylim([0.995, 1.105]);

figure(1)
subplot(324)
plot(time,x(:,1),'red')
hold on
plot(time,ylinear(:,1),'black', LineStyle='--')
legend('non-linear','linearized','Location','northeast')
ylabel('h [m]')
xlabel('Time [min]')
ylim([0.5,1.5]);
hold off

figure(1)
subplot(326)
plot(time,x(:,2),'red')
hold on
plot(time,ylinear(:,2),'black', LineStyle='--')
legend('non-linear','linearized','Location','southeast')
ylabel('c_A [kmol/m^3]')
ylim([0.04, 0.07]);
xlabel('Time [min]')
hold off

figure(1)
print('-depsc2','-r600','Part2_inputs.eps') % save figure as eps

% Finding the slope, integrating process eq(9)
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%delta u
du_q2 = 0.1*q2_nom;
%delta h
dh_q2 = x(end,1) - x((end-4),1);
dh_q2_linear = ylinear(end,1) - ylinear((end-4),1);
%delta ca
dcaq2 = x(end,2) - x((end-4),2);
dcaq2_linear = ylinear(end,2) - ylinear((end-4),2);
%delta t
dtq2 = time(end) - time(end-4);

%calculating the gain of h
h_slopeq2 = dh_q2/dtq2;
h_gain_q2 = h_slopeq2/du_q2;
h_slopeq2_linear = dh_q2_linear/dtq2;
h_gain_q2_linear = h_slopeq2_linear/du_q2;

%calculating the gain of ca
ca_slopeq2 = dcaq2/dtq2;
ca_gain_q2 = ca_slopeq2/du_q2;
ca_slopeq2_linear = dcaq2_linear/dtq2;
ca_gain_q2_linear = ca_slopeq2_linear/du_q2;

%Printing the result
disp('For an increase in q2:')
fprintf('The non-linear gain in h is: %1.4f \n', h_gain_q2)
fprintf('The linearized gain (G_12) in h is: %1.4f \n', h_gain_q2_linear)
fprintf('The non-linear gain in cA is: %1.4f \n', ca_gain_q2)
fprintf('The linearized gain (G_22) in ca is: %1.4f \n\n', ca_gain_q2_linear)

%% Step in cAf
% Simulating a 10% increase in cAf:
q1_step=0;
q2_step=0;
k_step=0;
caf_step=0.1*caf_nom;
% Inserting updated values into step-vectors, which are sent to simulink
u_step = [q1_step;q2_step];
d_step = [caf_step;k_step];

%run Simulink model to test the step
sim('SimulinkPart2')

figure(2)
subplot(321)
plot(time,d(:,1),'blue')
title('Step on c_{Af}')
ylabel('c_{A,f} [kmol/m^3]')
xlabel('Time [min]')
ylim([0.995, 1.105]);

figure(2)
subplot(323)
plot(time,x(:,1),'red')
hold on
plot(time,ylinear(:,1),'black', LineStyle='--')
legend('non-linear','linearized','Location','northwest')
ylabel('h [m]')
xlabel('Time [min]')
hold off

figure(2)
subplot(325)
plot(time,x(:,2),'red')
hold on
plot(time,ylinear(:,2),'black', LineStyle='--')
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legend('non-linear','linearized','Location','southeast')
ylabel('c_A [kmol/m^3]')
ylim([0.047, 0.053])
xlabel('Time [min]')
hold off

%Finding the gains, SS-gain, eq(8)
ducaf = 0.1*caf_nom;

%calculating the gains of h
dycaf_h = max(x(:,1)) - min(x(:,1));
dycaf_linear_h = max(ylinear(:,1)) - min(ylinear(:,1));
h_gain_caf = dycaf_h/ducaf;
h_gain_caf_linear = dycaf_linear_h/ducaf;

%calculating the gains of ca
dycaf_ca = max(x(:,2)) - min(x(:,2));
dycaf_linear_ca = max(ylinear(:,2)) - min(ylinear(:,2));
ca_gain_caf = dycaf_ca/ducaf;
ca_gain_caf_linear = dycaf_linear_ca/ducaf;

%Printing the result
disp('For an increase in caf:')
fprintf('The non-linear gain in h is: %1.4f \n', h_gain_caf)
fprintf('The linearized gain (Gd_11) in h is: %1.4f \n', h_gain_caf_linear)
fprintf('The non-linear gain in cA is: %1.4f \n', ca_gain_caf)
fprintf('The linearized gain (Gd_12) in ca is: %1.4f \n\n', ca_gain_caf_linear)

%% Step in k
% Simulating a 10% increase in k:
q1_step=0;
q2_step=0;
k_step=0.1*k_nom;
caf_step=0;
% Inserting updated values into step-vectors, which are sent to simulink
u_step = [q1_step;q2_step];
d_step = [caf_step;k_step];

%run Simulink model to test the step
sim('SimulinkPart2')

figure(2)
subplot(322)
plot(time,d(:,2),'blue')
title('Step on k')
ylabel('k [m^3/kmol*min]')
xlabel('Time [min]')

figure(2)
subplot(324)
plot(time,x(:,1),'red')
hold on
plot(time,ylinear(:,1),'black', LineStyle='--')
legend('non-linear','linearized','Location','northwest')
ylabel('h [m]')
xlabel('Time [min]')
hold off

figure(2)
subplot(326)
plot(time,x(:,2),'red')
hold on
plot(time,ylinear(:,2),'black', LineStyle='--')
legend('non-linear','linearized','Location','northeast')
ylabel('c_A [kmol/m^3]')
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ylim([0.047, 0.053])
xlabel('Time [min]')
hold off

figure(2)
print('-depsc2','-r600','Part2_disturbances.eps') % save figure as eps

%Finding the gains, SS-gain, eq(8)
duk = 0.1*k_nom;

%calculating the gains of h
dyk_h = max(x(:,1)) - min(x(:,1));
dyk_linear_h = max(ylinear(:,1)) - min(ylinear(:,1));
h_gain_k = dyk_h/duk;
h_gain_k_linear = dyk_linear_h/duk;

%calculating the gains of ca
dyk_ca = min(x(:,2)) - max(x(:,2));
dyk_linear_ca = min(ylinear(:,2)) - max(ylinear(:,2));
ca_gain_k = dyk_ca/duk;
ca_gain_k_linear = dyk_linear_ca/duk;

%Printing the result
disp('For an increase in k:')
fprintf('The non-linear gain in h is: %1.4f \n', h_gain_k)
fprintf('The linearized gain (Gd_21) in h is: %1.4f \n', h_gain_k_linear)
fprintf('The non-linear gain in cA is: %1.4e \n', ca_gain_k)
fprintf('The linearized gain (Gd_22) in ca is: %1.4e \n\n', ca_gain_k_linear)

A.2 SysODE

Listing 2: The code in the file SysODE.m used to iterate over the differential equations in part 1

% TKP4140 - Autumn19.
% This function defines the system of ordinary differential equations (ODE)
function dxdt = SysODE(x,u,d,p)
% The order of the argument corresponds to the order in which
% you connect the signals to the Interpreted Matlab Fcn in Simulink
% x-states; u-inputs; d-disturbances; p-model parameters

% ==========MODEL PARAMETERS============================

A = p(1); % [m^2]

%======Derivatives: WRITE YOUR DIFFERENTIAL EQUATIONS HERE =======

q1=u(1);
q2=u(2);

caf=d(1);
k=d(2);

h=x(1);
ca=x(2);

%Write the differential equations
dxdt(1) = (q1-q2)/A;
dxdt(2) = ((caf-ca)*q1/(A*h)) - k*ca^2;

dxdt = dxdt(:); % system of differential equations as vertical vector

end
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A.3 ComputeTransferfunctions

Listing 3: The code in the file computeTransferFunctions.m was used to calculate the transfer function
matrices in part 2

%% In this function you:
% - Define the differential equations for your model
% - Linearize and get your model in the the state-space form.
% - Obtain the transfer function matrices G(s) and Gd(s)
%
% To obtain the transfer functions G and Gd from the state-space form:
% Suppose you have the linearized system x_dot=Ax+Bu+Ed, y=C*x; Eq.(1)
% where x=delta states, u= delta MV, d= delta DV and y= delta CV
% From this we want to compute the transfer function matrices G(s) and Gd(s)
%
% We apply Laplace transform to Eq (1) to obtain:
% G(s)=C*(I*s-A)^-1*B and Gd(s)=C*(I*s-A)^-1*E
% You should know how to derive this by hand! possible exam question
%
% You can also consider that u inclues MVs and DVs. In this case the model
% would be x_dot=Ax+Bd*u, where Bd is a nx-by-(nMV+nDV) matrix.
% In this case you would get only one transfer function matrix G(s).
% Both forms are equivalent, as long you know what your are doing.
%
%%

function [G,Gd,A,B,C,D,E]=computeTransferFunctions

%%Definition of differential equations

% Define/create symbolic variables for your MV, DV, CV
syms h q1 q2 cA cAf k

% Tip: if your equations have additional variables that depend on
% your MVs, DVs or CVs and you want to define these additional variables,
% so that you can write your differential equations in a simpler way,
% you can declare these "aid" variables as symbolic variables too. For
% examples: valve_flow, enthalpy_in, etc.

%Define vectors of DV(d), MV(u), states(x) and CV(y)
d = [cAf;k]; %deviation variables; vertical vector (if more than 1 DV)
u = [q1;q2]; %inputs; vertical vector (if more than 1 MV)
x = [h;cA]; %states; vertical vector (if more than one states)
y = [h;cA]; % outputs; vertical vector (if more than one CV)
% y can be different than the states x, but we recommend to select y=x as
% in part 3 you may decide to control all your states

%Parameters that will be used in the differential equations
Area = 4; %m^2 - Note that we are not calling it A because below A will be

% matrix A from x_dot=Ax+Bu+Ed, y=C*x. In other words, be careful
% when naming your parameters.

%Here you can write additional algebraic equations for the variables that
%you will use in the differential equations.

%Differential equations
f(1,1) = 1/Area*(q1-q2);
f(1,2) = (cAf - cA)*(q1/(Area*h)) - k*cA^2;
%For more than 1 state: f(1,1)=...; f(1,2)=...;
%Alternatively, write f directly as an horizontal vector

%% Linearization
% Define the Jacobian - for the state space form x_dot=Ax+Bu+Ed
A=jacobian(f,x);
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B=jacobian(f,u);
E=jacobian(f,d);

% Define the Jacobian from states to output: y=Cx+Du
C=jacobian(y,x); % Select the outputs from the states
D=jacobian(y,u); % Matrix from input to output. Usually D=0

%Define the nominal point for x,y, u, d
h = 1;
cA = 0.05;

q1 = 1;
q2 = 1;

cAf = 1;
k = 95;

%Replace the symbolic variables by their corresponding nominal value
A=double(subs(A));
B=double(subs(B));
E=double(subs(E));

C=double(subs(C));
D=double(subs(D));

%Laplace variable
s=tf('s');

%Identity matrix
n=length(A); I=eye(n);

%Obtaining transfer function matrix - y = G*u+Gd*d
% you must know how to do this by hand! possible exam question.
G=C*inv(s*I-A)*B+D; % tranfer function from input to output
Gd=C*inv(s*I-A)*E; % tranfer function from disturbance to output

%Simplifying equation - minimum realization
%(cancels common roots in numerator and denominator)
G=minreal(G);
Gd=minreal(Gd);

%You may change the display format.
G=set(zpk(G), 'DisplayFormat','time constant');
Gd=set(zpk(Gd), 'DisplayFormat','time constant');
end
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B Simulink part 1 & 2

In Figure 12, the setup for the simulink model used in part 1 and 2 is shown.

Figure 12: The simulink model used in the simulation. The handout model was adapted to handle a system
of two differential equations. u increase, nominal u, nominal d, d increase and model parameters
were defined in the MATLAB script Simulation.m shown in appendix A.1. The differential
equations were solved numerically using the system of ODE block, which calls on the function
defined in SysODE.m script shown in appendix A.2.
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C Calculations of the transfer functions

The transfer functions were calculated using eq. (15) and eq. (16). Looking at the equations,
the contain a common term, which will be calculated first.

C · (s · I −A)−1 =

[
1 0
0 1

]
·
(
s ·

[
1 0
0 1

]
−
[

0 0
−0.2375 −9.75

])−1

=

[
1 0
0 1

]
·
[

s 0
0.2375 s+ 9.75

]−1

For a general matrix, M :

M =

[
a b
c d

]
Its inverse can be calculated using:

M−1 =
1

det(M)
· adj(M) =

1

ad− bc

[
d −b
−c a

]
Applying this, the result is:

C · (s · I −A)−1 =

[
1 0
0 1

]
·

[ 1
s 0

−0.2375
s(s+9.75)

1
s+9.75

]

=

[ 1
s 0

−0.2375
s(s+9.75)

1
s+9.75

]

C.1 Calculating G

Inserting the common term into eq. (15), the result is:

G(s) =

[ 1
s 0

−0.2375
s(s+9.75)

1
s+9.75

]
·
[

0.25 −0.25
0.2375 0

]
+

[
0 0
0 0

]
=

[ 0.25
s

−0.25
s

0.2375s−0.059375
s(s+9.75)

0.059375
s(s+9.75)

]

Finally, rewriting to time constant form:

G(s) =

 0.25
s

−0.25
s

−6.090·10−3(−4s+1)
s(0.1026s+1)

6.090·10−3

s(0.1026s+1)


C.2 Calculating Gd

Inserting the common term into eq. (15), the result is:

Gd(s) =

[ 1
s 0

−0.2375
s(s+9.75)

1
s+9.75

]
·
[

0 0
0.25 −0.0025

]
+

[
0 0
0 0

]
=

[
0 0

0.25
s+9.75

−0.0025
s+9.75

]

Rewriting to time constant form:

Gd(s) =

[
0 0

2.564·10−2

0.1026s+1
−2.564·10−4

0.1026s+1

]
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D Matlab scripts part 3

D.1 Simulation

Listing 4: The code in the file Part3.m used to perform the simulations in part 3

% TKP4140 Process Control Project part 3
warning off
clc
clear
close all

%% Set default options for plotting
set(0,'DefaultTextFontName','Times',...
'DefaultTextFontSize',18,...
'DefaultAxesFontName','Times',...
'DefaultAxesFontSize',18,...
'DefaultLineLineWidth',2,...
'DefaultLineMarkerSize',7.75)

%% Tuning parameters for the controllers
% Collecting the gains from the output of part 2
h_gain_q1 = 0.25;
cA_gain_q2 = 0.006089743589744;
% The delay in the transfer functions as shown in the report
theta11 = 0;
theta22 = 2/34;
% Determining the closed loop time constant, as explained in the report
tauc2 = theta22*25;
tauc1 = tauc2/5;
% Calculating Kc and tauI
Kc1 = (1/h_gain_q1)*(1/(tauc1+theta11));
Kc2 = (1/cA_gain_q2)*(1/(tauc2+theta22));
tauI1 = 4*(tauc1+theta11);
tauI2 = 4*(tauc2+theta22);

%% Initializing the model

%Model parameters
A=4; %area of the tank in m^2
p = [A]; % vertical vector with model parameters. This is used in Simulink

% Nominal values for u and d.
% The nominal values are used for
q1_nom = 1;
q2_nom = 1;
caf_nom = 1;
k_nom = 95;

% The vectors that get sent to the simulink simulation
u_nom=[q1_nom;q2_nom];
d_nom=[caf_nom;k_nom];

% Define the number of variales and model parameters
% These are used in the Interpreted Matlab Fcn block in Simulink
Nx = 2; %--CHANGE HERE-- number of states--NUMBER OF DIFFERENTIAL EQUATIONS
Nu = 2; %--CHANGE HERE-- number of inputs--NUMBER OF MVS
Nd = 2; %--CHANGE HERE-- number of disturbances--NUMBER OF DVS
Np = 1; %--CHANGE HERE-- number of model parameters--CONSTANT VALUES
Ny = Nx;% Do not change--number of outputs---equal to number of states

%INITIAL CONDITIONS FOR THE STATES
%Set the initial conditions you found for every state.
%These intial conditions will be used to solve the differential equations.
x0 = [1;1/20]; % [h;cA]
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%% Set the time for giving the steps
setpoint_t_step = 1; % Sets the time for changes in the setpoint
d_t_step = 1; % Sets the time for disturbance

%% Setting the setpoints to be nominal values of states
s_h = 1;
s_cA = 1/20;

%% Simulation time
tsim = 20;

%% Testing the model

%% 10% increase in setpoint of h
s_h_step = 0.1*s_h;
s_cA_step = 0;
k_step=0;
caf_step=0;
% Inserting updated disturbance values into step-vectors, which are sent to simulink
d_step = [caf_step;k_step];

%% Running the model
sim('part3sim.mdl')

%% Plotting the result
figure(1)
subplot(421)
plot(time,x(:,1),'red', 'DisplayName','h')
hold on;
plot(time, h_set, '--', 'color', 'black', 'DisplayName', 'h_s')
hold off;
title('Setpoint increase of h')
ylabel('h [m]')
legend()

figure(1)
subplot(423)
plot(time,x(:,2),'red', 'Displayname', 'c_A')
hold on;
plot(time, cA_set, '--', 'color', 'black', 'DisplayName', 'c_{As}')
hold off;
ylabel('cA [kmol/m3]')
legend()

figure(1)
subplot(425)
plot(time,u(:,1),'blue')
hold on;
ylabel('q_1 [m^3/min]')

figure(1)
subplot(427)
plot(time,u(:,2),'blue')
hold on;
ylabel('q_2 [m^3/min]')
xlabel('Time [min]')

IAE_h_h = IAE_h(end);
IAE_cA_h = IAE_cA(end);

%% 10% increase in setpoint of cA
s_h_step = 0;
s_cA_step = 0.1*s_cA;
k_step=0;
caf_step=0;
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% Inserting updated disturbance values into step-vectors, which are sent to simulink
d_step = [caf_step;k_step];

%% Running the model
sim('part3sim.mdl')

%% Plotting the result
figure(1)
subplot(422)
plot(time,x(:,1),'red', 'DisplayName','h')
hold on;
plot(time, h_set, '--', 'color', 'black', 'DisplayName', 'h_s')
hold off;
title('Setpoint increase of c_A')
ylabel('h [m]')
legend()

figure(1)
subplot(424)
plot(time,x(:,2),'red', 'Displayname', 'c_A')
hold on;
plot(time, cA_set, '--', 'color', 'black', 'DisplayName', 'c_{As}')
hold off;
ylabel('cA [kmol/m3]')
legend()

figure(1)
subplot(426)
plot(time,u(:,1),'blue')
hold on;
ylabel('q_1 [m^3/min]')

figure(1)
subplot(428)
plot(time,u(:,2),'blue')
hold on;
ylabel('q_2 [m^3/min]')
xlabel('Time [min]')

IAE_h_cA = IAE_h(end);
IAE_cA_cA = IAE_cA(end);

%% Export figure in .eps format. This gives optimal results in Latex

set(gcf,'Position',[100 100 1200 800]) % set the figure size
% first 2 numbers are the coordinates on your screen

% 3rd number is the figure width
% 4th number is the figure hight

print('-depsc2','-r600','SetPointIncrease.eps') % save eps.

%% 10% increase in setpoint of cAf
s_h_step = 0;
s_cA_step = 0;
k_step=0;
caf_step=0.1*caf_nom;
% Inserting updated disturbance values into step-vectors, which are sent to simulink
d_step = [caf_step;k_step];

%% Running the model
sim('part3sim.mdl')

%% Plotting the result
figure(2)
subplot(521)
plot(time,d(:,1),'green')
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title('Increase in c_{Af}')
ylabel('c_{Af} [kmol/m^3]')

figure(2)
subplot(523)
plot(time,x(:,1),'red', 'DisplayName','h')
hold on;
plot(time, h_set, '--', 'color', 'black', 'DisplayName', 'h_s')
hold off;
ylabel('h [m]')
legend()

figure(2)
subplot(525)
plot(time,x(:,2),'red', 'Displayname', 'c_A')
hold on;
plot(time, cA_set, '--', 'color', 'black', 'DisplayName', 'c_{As}')
hold off;
ylabel('cA [kmol/m3]')
legend()

figure(2)
subplot(527)
plot(time,u(:,1),'blue')
hold on;
ylabel('q_1 [m^3/min]')

figure(2)
subplot(529)
plot(time,u(:,2),'blue')
hold on;
ylabel('q_2 [m^3/min]')
xlabel('Time [min]')

IAE_h_caf = IAE_h(end);
IAE_cA_caf = IAE_cA(end);

%% 10% increase in setpoint of k
s_h_step = 0;
s_cA_step = 0;
k_step=0.1*k_nom;
caf_step=0;
% Inserting updated disturbance values into step-vectors, which are sent to simulink
d_step = [caf_step;k_step];

%% Running the model
sim('part3sim.mdl')

%% Plotting the result
figure(2)
subplot(522)
plot(time,d(:,2),'green')
ylabel('k_{Af} [m^3/kmol*min]')
title('Increase in k')

figure(2)
subplot(524)
plot(time,x(:,1),'red', 'DisplayName','h')
hold on;
plot(time, h_set, '--', 'color', 'black', 'DisplayName', 'h_s')
hold off;
ylabel('h [m]')
legend()

figure(2)
subplot(526)
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plot(time,x(:,2),'red', 'Displayname', 'c_A')
hold on;
plot(time, cA_set, '--', 'color', 'black', 'DisplayName', 'c_{As}')
hold off;
ylabel('cA [kmol/m3]')
legend()

figure(2)
subplot(528)
plot(time,u(:,1),'blue')
hold on;
ylabel('q_1 [m^3/min]')

figure(2)
subplot(5,2,10)
plot(time,u(:,2),'blue')
hold on;
ylabel('q_2 [m^3/min]')
xlabel('Time [min]')

IAE_h_k = IAE_h(end);
IAE_cA_k = IAE_cA(end);

%% Export figure in .eps format. This gives optimal results in Latex

set(gcf,'Position',[100 100 1200 800]) % set the figure size
% first 2 numbers are the coordinates on your screen

% 3rd number is the figure width
% 4th number is the figure hight

print('-depsc2','-r600','DisturbanceControlled.eps') % save eps.

%% Printing the IAE-values
fprintf(['For step change the setpoint of h\n' ...

' the IAE_h = %f, and IAE_cA = %f \n'], IAE_h_h, IAE_cA_h)
fprintf(['For step change the setpoint of cA\n' ...

' the IAE_h = %f, and IAE_cA = %f \n'], IAE_h_cA, IAE_cA_cA)
fprintf(['For step change in cAf\n' ...

' the IAE_h = %f, and IAE_cA = %f \n'], IAE_h_caf, IAE_cA_caf)
fprintf(['For step change in k\n' ...

' the IAE_h = %f, and IAE_cA = %f \n'], IAE_h_k, IAE_cA_k)

D.2 SysODE

The same MATLAB file shown Appendix A.2 was used in part 3 as well.
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D.3 Bodeplot

Listing 5: The code in the file Bodeplots.m used to create the bodeplot in part 3

%% Tuning parameters for the controllers
% Collecting the gains from the output of part 2
h_gain_q1 = 0.25;
cA_gain_q2 = 0.006089743589744;
% The delay in the transfer functions as shown in the report
theta11 = 0;
theta22 = 2/34;
% Determining the closed loop time constant, as explained in the report
tauc2 = theta22*25;
tauc1 = tauc2/5;
% Calculating Kc and tauI
Kc1 = (1/h_gain_q1)*(1/(tauc1+theta11));
tauI1 = 4*(tauc1+theta11);

% The transfer function G11:

s=tf('s');
G11 = 0.25/s;
c1 = Kc1*(tauI1*s+1)/((tauI1*s));

L1 = G11*c1;
%L=set(zpk(L1), 'DisplayFormat','time constant')
margin(L1)
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E Simulink part 3

In Figure 13, the setup for the simulink model used in part 3 is shown.

Figure 13: The simulink model used in the simulation with the implemented controllers.
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