Problem 1: Feedforward control

Consider the following process:

$$y = gu + g_d d \tag{1}$$

with a measured disturbance $d_m = g_{dm}d$. Propose a realizable feedforward controller when:

$$g(s) = 5 \frac{e^{-2s}}{5s+1}$$

$$g_d(s) = \frac{3}{5s+1}$$

$$g_{dm}(s) = \frac{1}{0.5s+1}$$
(2)
(3)

$$g_d(s) = \frac{3}{5s+1} {3}$$

$$g_{dm}(s) = \frac{1}{0.5s + 1} \tag{4}$$

Inserting
$$d_m = g_{dm} d$$

$$\Rightarrow d = \frac{d_m}{g_{dm}}$$

$$y = gu + gd \cdot \frac{d_m}{g_{dm}}$$

An ideal feedforward controller can be found from

=>
$$C_{FF_1} ideal = -\frac{gd}{9.9 dm} = -\frac{\frac{3}{55+1}}{\frac{e^{-25}}{55+1}} = -\frac{3}{5}(0.55+1)e^{25}$$

where must have at least as many τ 's as T's

For the controller to be realizable, the pole-polynomial must have higher or equal order than the zero polynomial, also. O must be ≥0

Selecting
$$(0.55+1) \Rightarrow C_{FF} = \frac{C_{FF}, ideal(\theta=0)}{(0.55+1)} = -\frac{3}{5} = -0.0$$

Problem 2: Cascade control

The process below describes cascade control with controllers c_1 and c_2 based on measurements y_1 and y_2

$$y_2 = g_2 u + d_2$$

$$y_1 = g_1 y_2 + d_1$$
 (6)
 $u = c_2 (y_{2s} - y_2)$ (7)

$$y_{2s} = c_1(y_{1s} - y_1)$$
(8)

1. Draw a block diagram of cascade control.

2. Answer if the following statements are true or false. Justify your answers.

Cascade control is recommended when . . .

- (a) d_1 is the main disturbance
- (b) d_2 is the main disturbance
- (c) g_1 has a large effective delay
- (d) g_2 has a large effective delay
- (e) g_1 is nonlinear
- (f) g_2 is nonlinear
- a) False, then we don't have a benefit of contalling y2
- b) True, then the fast control will ensure that do is neglected
- C) True, then we will have a fast inner loop, and a slone outer loop.
- d) False, then the inner loop will have a lot of instability.

3. Now, you are going to tune the controllers for the cascade control configuration.

In all cases, select τ_c = effective delay.

Consider the following transfer functions:

$$g_1(s) = \frac{2e^{-s}}{10s+1}$$

$$g_2(s) = \frac{3e^{-0.2s}}{15s+1} \tag{1}$$

(a) Tune a SIMC PI controller $c_2(s)$ for $g_2(s)$

$$V_{c} = \frac{1}{3} \cdot \frac{15}{20.2} = \frac{5}{0.4} = 12.5$$

$$=>$$
 $(2(5) = 12.5 \cdot \frac{1.65 + 1}{1.65}$

(b) Obtain the closed loop transfer function $T_2(s)$ for the inner loop. Hint: the closed loop response of the inner loop $T_2(s)$ can be approximated to a first order with time delay process. This can be used to tune controller $c_1(s)$ in part (c) and (d),

$$T_2(s) = \frac{c_2(s)g_2(s)}{1 + c_2(s)g_2(s)} \approx \frac{e^{-\theta s}}{\tau_c s + 1}$$
(11)

Using eq. (11):
$$I_2(s) \approx \frac{e^{-0.2s}}{0.2s+1}$$

(c) Obtain the transfer function $g'_1(s)$ for the "new" process from y_{2s} to y_1 .

$$g'(5) = T_2 \cdot g_1$$

= $\frac{e^{-0.25}}{0.25 + 1} \cdot \frac{2e^{-5}}{105 + 1}$

$$g'(s) = 2 \frac{e^{-1/2s}}{(10s+1)(0,2s+1)}$$

(d) Tune a SIMC PI controller $c_1(s)$ for $g'_1(s)$.

$$\bigcirc = \bigcirc_0 + \frac{\gamma_2}{2} = |_1 2 + 0_1| = 1.3$$

$$\gamma_1 = |_0 + \frac{0.2}{2} = |_0|$$

$$=> g'(s) \approx 2 \cdot \frac{e^{-1,35}}{|0,15+1|}$$

First-order + delay model for PI-control

$$G(s) = \frac{k}{\tau_1 s + 1} e^{-\theta s}$$

PI-controller (based on first-order model)

$$c(s) = K_c(1 + \frac{1}{\tau_I s}) = K_c \frac{\tau_I s + 1}{\tau_I s}$$

For cascade form PID controller:

$$\begin{split} K_c &= \frac{1}{k} \frac{\tau_1}{\tau_c + \theta} = \frac{1}{k'} \cdot \frac{1}{\tau_c + \theta} \\ \tau_I &= \min\{\tau_1, \frac{4}{k'} \frac{4}{K_c}\} = \min\{\tau_1, 4(\tau_c + \theta)\} \end{split}$$

Then, the SIMC-rules gives
$$(\kappa = \theta)$$

 $K_c = \frac{1}{2} \cdot \frac{10,1}{2\cdot 1,3} = 1,94$

$$C_{I} = min(10, 1, 8.1, 3) = 10,1$$

(e) What would the SIMC PI controller be **without** the cascade? In other words, tune a controller $c_3(s)$ for $g_3(s) = g_1(s)g_2(s)$.

$$9_{3} = \frac{2e^{-5}}{|0s+1|} \cdot \frac{3e^{-0.25}}{|5s+1|} = \frac{6e^{-1.25}}{(|5s+1|)(|0s+1|)}$$

Using the half rule:

$$\tau_1 = 15 + \frac{10}{2} = 20$$
, $\theta = 1.2 + \frac{10}{2} = 6.2$

$$g_3 \approx 6 \cdot \frac{e^{-6\lambda 5}}{20s+1}$$

Then, using SIMC-rules:

$$C_{c} = \frac{1}{6} \cdot \frac{20}{2.62} = 0.269$$

Problem 3: Water mixer

Figure 1: Mixer system

Consider the process of mixing hot and cold water, as shown in Figure 1. The process has inputs $u_1 = \Delta q_h \ [\ell/s], \ u_2 = \Delta q_c \ [\ell/s],$ and outputs $y_1 = \Delta T \ [^{\circ}C], \ y_2 = \Delta q \ [\ell/s].$

The control objective is to have a mixing temperature $T=40^{\circ}\mathrm{C}$ and a total flow leaving the mixer of q=1 ℓ/s . At the nominal operating point we have $T_c=30^{\circ}\mathrm{C}$ and $T_h=60^{\circ}\mathrm{C}$.

1. Formulate the energy and mass balances. The dynamics of this process are very fast; so, a steady-state model is sufficient to get T and q.

Assume Cp,w = const

$$T = \frac{q_c \cdot T_c + q_h \cdot T_h}{q} = \frac{q_c \cdot T_c + q_h \cdot T_h}{q_c + q_h}$$

2. Linearize the model and show that the linear model can be written y = Gu, where:

$$G = \begin{bmatrix} k_1 & k_2 \\ 1 & 1 \end{bmatrix}$$
with: $k_1 = (T_h^* - T^*)/q^*$ $k_2 = (T_c^* - T^*)/q^*$ $u = [u_1 \quad u_2]^T$

$$= \sum_{k=1}^{\infty} W_{k} n^{\frac{1}{2}} \qquad G = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}$$

The symbol * denotes the steady state value

Introducing deviation variables:
$$\Delta \Psi = \Psi - \Psi^*$$

$$\Delta q = \Delta q_C + \Delta q_h \implies g_{21} = g_{22} = 1$$

$$\Delta T = g_{22} \Delta q_C + g_{21} \Delta q_h$$

Using the 1st order taylor expension:

$$g_{12} = \frac{\int T_{c} \cdot (q_{c} + q_{h}) - (q_{c} T_{c} + q_{h} T_{h}) \cdot I}{(q_{c} + q_{h})^{2}} = \frac{T_{c}}{q_{c} + q_{h}} - \frac{q_{c} T_{c} + q_{h} T_{h}}{(q_{c} + q_{h})^{2}} = \frac{T_{c} - T}{q_{c} + q_{h}} = k_{2}$$

I expect a similar result for g21 due to how the expression looks:

$$g_{11} = \frac{T_h - T}{q_c + q_h} = k,$$

In conclusion:
$$\Delta q = 1 \cdot \Delta q_c + 1 \cdot \Delta q_h$$

$$\Delta T = \frac{T_c - T}{q_c + q_h} \cdot \Delta q_c + \frac{T_h - T}{q_c + q_h} \Delta q_h$$
(an be written as $y = Gu$,
where
$$y = \begin{bmatrix} \Delta T \\ \Delta q_c \end{bmatrix}$$

$$k_1$$

$$k_2$$

$$k_3$$

$$k_4$$

$$k_4$$

$$k_5$$

$$G = \begin{bmatrix} k_1 & k_2 \\ 1 & 1 \end{bmatrix}$$
 QED

3. What are the steady state values for q_c and q_h ?

$$q^{*} = 1 = q^{*} + q^{*} = q^{*} - q^{*}$$

(2)
$$T^* = 40 = \frac{q_c^* T_c^* + q_h^* T_h^*}{q_h^*} = \frac{(1-q_h^*) 30 + q_h^* 60}{1}$$

 $40 = 30 + 30 q_h^* \implies q_h^* = \frac{1}{3} \stackrel{(1)}{\implies} q_c^* = \frac{2}{3}$

4. Find the gain matrix G at the nominal operating point.

$$k_1^* = \frac{60 - 40}{1} = 20$$
 $k_2^* = \frac{30 - 40}{1} = -10$

$$\begin{pmatrix}
x & y & y \\
y & = y & y \\
y & y & y \\$$

5. Based on G, which stream $(q_h \text{ or } q_c)$ would you use to control the temperature (T)? Explain briefly.

I would use qu, as it has the highest gain due to the larger temperature difference, which gives a better/larger/faster response than for qc.