Problem 1: Feedforward control

Consider the following process: I i gé‘:l‘ & = &
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with a measured disturbance d,, = g4, d. Propose a realizable feedforward controller J
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Problem 2: Cascade control

The process below describes cascade control with controllers ¢; and ¢y based on mea-
surements y; and yo

Y2 = gou +da (5)

Y1 =g1y2 +di (6)

u = ca(y2s — y2) (7

Y2s = c1(y1s — y1) (8)

1. Draw a block diagram of cascade control.
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2. Answer if the following statements are true or false. Justify your answers.

Cascade control is recommended when ...

(a) dy is the main disturbance
(b) ds is the main disturbance
(¢) g1 has a large effective delay
(d) g2 has a large effective delay
(e) g1 is nonlinear

(f) g2 is nonlinear
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3. Now, you are going to tune the controllers for the cascade control configuration.
In all cases, select 7. = effective delay.

Consider the following transfer functions:
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First-order + delay model for PI-control

G(s) = —L_ ¢ 0s

(a) Tune a SIMC PI controller ca(s) for ga(s)
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PI-controller (based on first-order model)
G = min(15, 4-(2-02)) = Wt c(s) = Ke(1+ 55) = K222

| For cascade form PID controller:
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(b) Obtain the closed loop transfer function T»(s) for the inner loop.
Hint: the closed loop response of the inner loop 75(s) can be approximated to
a first order with time delay process. This can be used to tune controller ¢;(s)
in part (¢) and (d),
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(c) Obtain the transfer function g/ (s) for the "new” process from yos to 3.
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(d) Tune a SIMC PI controller ¢;(s) for g{(s).
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(e) What would the SIMC PI controller be without the cascade? In other words,
tune a controller c3(s) for g3(s) = g1(s)ga(s).
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Problem 3: Water mixer
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Figure 1: Mixer system

Consider the process of mixing hot and cold water, as shown in Figure 1. The process
has inputs w1 = Agp, [£/s], ua = Ag. [¢/s], and outputs y; = AT [°C], y2 = Aq [¢/s].

The control objective is to have a mixing temperature 7" = 40°C and a total flow
leaving the mixer of ¢ =1 £/s. At the nominal operating point we have T, = 30°C and
T}, = 60°C.

1. Formulate the energy and mass balances. The dynamics of this process are very
fast; so, a steady-state model is sufficient to get 7" and q.
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Assume. Coms = const

2. Linearize the model and show that the linear model can be written y = Gu, where:
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with: k= (T —T*)/q¢* ko= (T} -T%)/q*

The symbol * denotes the steady state value.
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3. What are the steady state values for ¢. and ¢;?

(1) = 1=+ => gr-|-qp
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4. Find the gain matrix G at the nominal operating point.
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5. Based on G, which stream (g or g.) would you use to control the temperature
(T)? Explain briefly.
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