Exer	cise 1:						• •	• •	*	• •		•	• •	•
	. What are the mai	n stabilis	ation mechanisms	for colloidal dispe	ersions?									
b.	. What is bridging f	flocculatio	on?	n ana si ana										
C.	. Explain how non-		mers that form a "l	orushlike" layer o	n particle	s can	• •	• •		• •	• •	•	0 0	•
٦	stabilise dispersio		water left for eave	ral dava da nati	lessulate	where			•	• •		•	• •	•
a.	. Colloidal particles		le/l calcium chloride									•		
	mechanism for th				Jy otabilit									
		•												
• •	* * * * *		• • • •			• •		• •	•	• •		•	• •	•
• •	a) The main stabilizat	tion mechani	isms are electrostatic and	steric stabilization, if	both of the n	nechanisms	s are brese	nt in a dis	spersion	, it is calle	ed electroi	static		
	stabilization. We also												• •	
• •	h) Bridaina flacculati	on io whon a	a polymer is adsorbed on	two narticles (at differ	ont narto of	the chain)	orpatino a	hridop ho	Huloon t	he narticl	00	•	• •	*
• •	by Bridging Recoulding		poignion is described on		orn parts of		oroquing q	bridge be		no par noi		•	• •	•
• •	a) This is a form of a	torio otobiliz	ation. The lyophobic part	of the nolumer attache	oo to tho nor	iolo ourfoo	a at hiah a	nouioh ao	nnonitra	tions of r	olumoro	thio a aug	oo tho '	
			is layer prevents the part		•		-	-		•	Joiginers,			
		ike layer. I li	iis iager preveniis ille part	cies nom coaguianny	by stelle fill	ulance, wi			persion.					
• •	d) The extension of t	ha alaatriaal	double layer decreases v		· · ·	, ouotom t	 ha iania atr	· · ·	16 M I	 Ulhiah ia (Wito largo	Thin mo	one that	•
• •						-							• •	•
		•	ot extend much. This mea		•			•				•		
• •		-	ost likely causing flocculat	ion or coagulation. As	ine solution	uues not t	iucculate t	ur several	i uays, Il	n This Cas	se, me sta	uiiization		
	· mechanism is most li	kely steric si	tapilization.											
Exerc	cise 2:	• • •			• •	• •	• •	• •	٠	• •		•	• •	•
A part	ticular product is an o/w				ี เบริก	o · ·		· · ·	10	• •	• •	•	• •	٠
	nt) of two surfactants, w = 13 and the other has a		an nyarophilic. The first	surraciant nas a	HLB	mix = 0	5.11+0	15:13	= 12					
			adding with a first for											
	ompany where you are ge the formulation of the				• •	• •		• •	•	• •		•	• •	٠
emuls	sion product. Of course,	the product	t must have the same of	w emulsion	$\mathbf{A} = \mathbf{C}^{\mathbf{A}}$		· 11 · / cm ·	 \ (@au)				•	• •	
cnara	cteristics.				A = C ₁₂	C30 C	.H3 (CH2,	h LOCH	2 (H2)) ₃₀ OH		•		
	ime the company sugge													
alcoho	ctants, both of which are ols)s, known as poly(eth	ylene oxide	e)s. The research direct	or poly(oxyetnylene or suggests using the	HI.B	. = 7 +	1(-0,47	5)+11(-0,	475)+	30.0,3	3+ 1.9			
surfac	ctants C12E30 and C16E6	(see Table	below). The formulation	is, thus, based on				• •		• •	. • • .	•		•
new h	nydrophilic and hydropho nydrophilic surfactant is i	needed for	this specific o/w emulsion	on?	• •	= 3,	• •	• •		• •		•	• •	•
C -1														
Catego			CH ₂ (CH ₂) ₁₆ COC	N=N1_+	B = C ₁₆ E	G CH3	(CH2)15 (0	$CH_{2}CH_{2}$), OH					
Anioni	Sodium oleate		CH ₃ (CH ₂) ₇ CH=C	CH(CH ₂) ₇ COO ⁻ Na ⁺										
	Sodium dodecyl sulfate Sodium dodecyl benzer		CH ₃ (CH ₂) ₁₁ SO ₄ CH ₃ (CH ₂) ₁₁ C ₆ H		/ R	- 7 + 1	.(-0,475	5 . 15. 1.	-0.475)+1.n [.]	7.7 T U.	•	• •	•
Cationi	ic Dodecylamine hydroch Hexadecyl(trimethyl)am		CH ₃ (CH ₂) ₁₁ NH ₃ ide (CTAB) CH ₃ (CH ₂) ₁₅ N(CH				• •	η· 13 Ε	0, 110		J9 T 1, C	•		
Non-io	onic Polyethylene oxides (C _x Nonylphenyl ethoxylate		CH ₃ (CH ₂) _{x-1} (OC		·	- 3,28	5							
	of ethylene oxide grou													
• •		1 0			Η) B	. = \N	a HLBA ·	+ (i-W.)	HLB.	 L		•	• •	*
·	Table 11.5 HLB m	impers of n										•	• •	•
· •	nemical group	HLB	Chemical group	HLB		. = W	A (HLBA	- ALBB)	+ HLE	Յթ				
	O ₄ Na	38.7	-0-	1.3										
	OOK	21.1	-OH (sorbitan)	0.5	=	> WA =	HLB _{Mix}	-HLBB	12	- 3,28	- 88,4	8%.	· •	
	OONa O₃Na	19.1 11.0	-(CH ₂ -CH ₂ -O)- -(CH ₂ CH ₂ CH ₂ O)-	0.33 -0.15		· · · A	HLBA -	HLBB .	13,	1 - 3,28			• •	•
	(tertiary amin)	9.4	-(CH ₂ CH ₂ CH ₂ CH ₂ O)-	-0.475	• •	• •				• •		•	• •	
	ter (sorbitan ring)	6.8	-CH ₃	-0.475		• •								
			$= CH_2$ -	-0.475										
	· •	~ 6.5												•
	enol residue, -C ₆ H ₄ -O- ee ester group	~ 6.5 2.4	-CF ₂ -	-0.87			• •			• •	• •			
	enol residue, -C ₆ H ₄ -O-		2		• •	• •		• •	•	• •			• •	
	enol residue, -C ₆ H ₄ -O- ee ester group OOH	2.4	-CF ₂ -	-0.87		• •	• •		•	• •	• •	•	• •	٠
· -C	enol residue, -C ₆ H ₄ -O- ee ester group OOH	2.4 2.1	-CF ₂ -	-0.87	· · ·		· ·		•	· · ·	· · ·	•	· ·	•
· -C	enol residue, -C ₆ H ₄ -O- ee ester group OOH	2.4 2.1	-CF ₂ -	-0.87	· ·	• •	• •	· ·	•	• •	· ·		• •	•
· -C	enol residue, -C ₆ H ₄ -O- ee ester group OOH	2.4 2.1	-CF ₂ -	-0.87	· · ·	· ·	· · ·	· ·	•	· · ·	· · ·		· ·	•
· -C	enol residue, -C ₆ H ₄ -O- ee ester group OOH	2.4 2.1	-CF ₂ -	-0.87	· · ·	· · ·	· · ·	· · ·	•	· · ·	· · ·	· · ·	· · ·	•
· -C	enol residue, -C ₆ H ₄ -O- ee ester group OOH	2.4 2.1	-CF ₂ -	-0.87		· · ·	· · ·	· · ·	•	· · ·	· · ·	· · ·	· · ·	•
· -C	enol residue, -C ₆ H ₄ -O- ee ester group OOH	2.4 2.1	-CF ₂ -	-0.87		· · ·	· · ·	· · ·	•	· · ·	· · ·		· · ·	•
· -C	enol residue, -C ₆ H ₄ -O- ee ester group OOH	2.4 2.1	-CF ₂ -	-0.87		· · ·	· · ·	· · ·	•	· · ·	· · ·		· · · · · · · · · · · · · · · · · · ·	•
· -C	enol residue, -C ₆ H ₄ -O- ee ester group OOH	2.4 2.1	-CF ₂ -	-0.87		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	•	· · · · · · · · · · · · · · · · · · ·	· · ·		 . .<	•
· -C	enol residue, -C ₆ H ₄ -O- ee ester group OOH	2.4 2.1	-CF ₂ -	-0.87		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	•	· · · · · · · · · · · · · · · · · · ·			 . .<	· · ·
· -C	enol residue, -C ₆ H ₄ -O- ee ester group OOH	2.4 2.1	-CF ₂ -	-0.87		· · · · · · · · · · · · · · · · · · ·			· · · ·				 . .<	· · ·
· -C	enol residue, -C ₆ H ₄ -O- ee ester group OOH	2.4 2.1	-CF ₂ -	-0.87		· · · · · · · · · · · · · · · · · · ·							 . .<	· · ·

Exercise 3			• • •	• •		٠	• •	٠	٠	• •	0	٠	٠
An optimal	HLB for an emulsion product is report		 ο) Λ	s HLB>8	 S wa haw	o on o/i	· · ·	°	•	• •		•	•
	t type of emulsion do we have?		a) H	S HLD'C	, we have	e an 0/ 0	o emuisic	• •		• •		•	•
specific form (with HLB = employed). three possit oil-water pa NPE ₁₅ and I	one of the hydrophilic surfactants you are unulation is no longer available in the mark $: 2.1)$ is still available and it is very cheap (Researchers from the research departmet pilities: i) a secret "in-house" (possibly anic ritition coefficient equal to 2×10^9 (they do NPE ₃₀ (NPE = nonyl phenyl ethoxylates we thylene oxide groups). The management	b) $HLB_{x} = 7 + 0,36 \cdot \ln (k_{o/w}) = 14,71$ $A = NPE_{15} = CH_{3}(CH_{2})_{8} - C_{6}H_{4} - (OCH_{2}CH_{2})_{15}OH$											
	e three surfactants is almost the same.		$H = NPE_{15} = (H_3 L(H_2)_8 = C_6 H_4 = (OCH_2 CH_2)_15 OH$										
to yo	th one of the three surfactants (X, NPE ₁₅ of ur manager for this specific product as a s longer on the market?	$HLB_{A} = 7 + 9.(-0.475) + (.(-0.475) + 15.0.33 + 1.9) = (.725)$											
Anionic	Sodium stearate	Structure CH ₃ (CH ₂) ₁₆ COO ⁻ Na ⁺											٠
Cationic	Sodium oleate Sodium dodecyl sulfate (SDS) Sodium dodecyl benzene sulfonate Dodecylamine hydrochloride	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COO ⁻ Na ⁺ CH ₃ (CH ₂) ₁₁ SO ₄ ⁻ Na ⁺ CH ₃ (CH ₂) ₁₁ C ₆ H ₄ SO ₃ ⁻ Na ⁺ CH ₃ (CH ₂) ₁₁ NH ₃ ⁺ Cl ⁻	$B = NPE_{30} = CH_3 (CH_2)_8 - C_6H_4 - (OCH_2CH_2)_{30} OH$ $HLB_B = 7 + 9 \cdot (-0.475) + (-0.475) + 30 \cdot 0.33 + 1.9$									•	
Non-ionic	$\label{eq:constraint} \begin{array}{l} \mbox{Hexadecyl(trimethyl)ammonium bromide (CTAB)} \\ \mbox{Polyethylene oxides } (C_x E_y \mbox{ or } C_x E_y) \\ \mbox{Nonylphenyl ethoxylates } (X_{FO} \mbox{ is the number} \\ \mbox{ of ethylene oxide groups)} \end{array}$	$\begin{array}{c} CH_{3}(CH_{2})_{15}N(CH_{3})_{3}^{+}Br^{-}\\ CH_{3}(CH_{2})_{x-1}(OCH_{2}CH_{2})_{y}OH\\ CH_{3}(CH_{2})_{8}^{-}C_{6}H_{4}^{-}(OCH_{2}CH_{2})_{X(EO)}OH\\ \end{array}$		= 7 + ° = 11,67		475) -	+ .6. (.	0,475	;) + '	30 · 0,	,33+), <u>9</u>	•
			NPE 30	is th	e beb	h sub	stitud	L.	•		•	•	•
can be ass Hamaker o	nt foam has a liquid/air surface to sumed to be spherical and mono constant fir the air/liquid/air interfa the critical film rupture thickness. $h_{c} = 0,207 \left(\frac{A_{121}^{2} R_{B}^{2}}{\gamma_{AL} \cdot \Delta P}\right)$	disperse with a diameter of z ace can be taken to 6 \times 10 ⁻²	20 μm. The ²⁰ J.	-) ¹ /7 =	. ¥.	<u>· m².</u> = · Pa. 10 ⁻⁸ m		<u>Nm</u>	•	· · ·	•	•	•
• •	Young's eq : $\Delta P = V$	$\frac{1}{R_1} + \frac{1}{R_2} = 25.10^{-3} \text{ N/m}$	·2·-10·10	-6m =	5000	Pa	• •	•	0	• •	•	•	0 0
		$k_1 = k_2 = k_3$.		• •	• •		• •	*		• •	۰		
Exercise 5	;·			• •	• •	٠				• •			٠
A newly for diameter of draining co	rmed foam with a liquid/air surface f 2 mm is exposed to draining by g prresponds to that of a vertical wate f the liquid phase can be taken to 2	ravity. It can be assumed that film of uniform thickness. D	at the Density and	· ·		•	• •	•	•	••••	•	•	•
	at is the average rate of vertical dra	aining when the film is 100 ar	nd 10 nm	• •	• •								•
	<, respectively? v can the rate of draining by gravity	/ be reduced?						٠			٠		
				• •					٠				
The foam i	s also exposed to horizontal draini	ng.							•				
radi	at is the rate of horizontal draining us, R _f , equal to 0.1 mm? v can the rate of draining by capilla		n and a	• •		•			•		•	•	•
	· · · · · · · · · · · ·		• • •						٠				*
	No. 1. All	1) ²									٠		
0	$A_{AV} = \sqrt{AV} = \frac{311200}{36}$	•		• •	0 0	٠	• •	٠	٠	• •	٠	٠	٠
• •			• • •		• •	٠	• •	•	٠	• •	٠	٠	٠
	1.8 μ/s	2.1000 kg/12 (100.10" K)2	10 01	• •	• •		• •	٠		• •		•	•
	$V_{AV} = V_{AV}$	8.10 ⁻³ [43/mg]	12,26 nm	• •		•		٠	•	• •	٠	٠	•
0 0			• • •		• •	٠	• •	•			٠	٠	٠
• •	$10 \text{ nm} : 1/ - \frac{9,81}{3} \text{ m/s}$	2. 1000 kg/m (10.10" m)2	0,1226 nm	• •		٠	• •					٠	٠
• •	VAV VAV	8.10-3 leg/mg	VI KEB NM	• •		٠	• •	٠	٠	• •	0	٠	÷

b) Choose shipt place with a lower draws, and a higher venture,
(a)
$$\frac{d\delta}{dt} + \frac{2\delta}{3\eta_{L}} \frac{2}{k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2} \text{ m}^{2} \text{ m}^{2} \text{ m}^{2})}{3 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{3 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{3 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{3 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{3 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{3 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^{2}} = \frac{2 (40 \text{ m}^{2} \text{ m}^{2})}{1 \ln r^{2} k_{L}^$$

12 - 5.10-6 mol/m2. In (1+0,23 m3/mot 20 mot/m3) $\overline{b_2} = 8ibl \cdot 10^{-6} \text{ mol/m}^2$ [2 = 8,61 umol/m2

a) The time it takes to create 1 ml.

of drops/ml

Time between each segment:

 $f = \frac{distance}{Vdriss} = \frac{33 \text{ min}}{40 \text{ mm/s}} = 0.825 \text{ s}$

Regression line system A

Regression line system B

System A

System B

 $t = \frac{V}{\dot{V}} = \frac{ImL}{85\mu L/min} = 11,76 \text{ mIn } \approx 706 \text{ s}$

Multiplying with these numbers gives the number

Exercise 7:

One way to measure emulsion stability is through microfluidic methods. Here, monodisperse droplets, ca. 60 μ m in diameter, are continuously generated at a rate of ca. 550 drops/s. During flow, some drops collide and undergo coalescence. High-speed recordings are taken at different points of a long channel (i.e. at increasing residence times) to determine the number of remaining initial-sized drops. The distance between each segment is 33 mm. The total flow rate is equal to 85 μ l/min, while the droplets flow at a velocity of 40 mm/s.

Sogmont	Remaining number of initial-sized drops [1/s]					
Segment	System A	System B				
1 (t=0)	550 drop/s	550 drop/s				
2	521 drop/s	401 drop/s				
3	502 drop/s	366 drop/s				
4	486 drop/s	329 drop/s				
5	471 drop/s	292 drop/s				
6	457 drop/s	246 drop/s				

 a) Calculate the number of drops in 1 ml of generated emulsion and plot the values for both systems as 1/N vs time, where N is the number of drops in 1 ml.

- b) Calculate the second-rate constant (kexp) for both systems.
- c) Which system is more likely to be stabilized by a surfactant and why?
- d) Typical rapid coagulation constant should be in the order of 10⁻¹² cm³/s. Suggest reasons for the difference between the calculated rate constants and this reference value.

1 [mL] 4.0 Using linear regression, and finding the 3.5 3.0 Slope of the lines, we get: 2.5 ړ t[s] kexp, A = 1.239728157840829e-07 mL/5Kemaining number of droplets kexp,B = 7.032669304299234e-07 mL/sSystem A [388235. 388235 System $mL/s = 10^{-3} dm^3/s = (m^3/c)$ C) Most likely system A, the coalescence is slower than in system B. This suggests that there are repulsive forces in system A, which is probably due to surfactants embedded in the droplets. Usually, we are looking at particles when we are analyzing coagulation, not droplets that are undergoing coalescence. The coalescence between droplets happens «easier» than particles, as droplets merge into larger droplets, which reduces the total surface area. As particles only stick together, the reduction is smaller, meaning the the driving force of the coagulation is lower than that of coalescence. We are looking at systems in flow. Which means that there are more collisions between droplets than there would have been in a dispersion «at rest» The droplets are larger than the particles we have looked at earlier (Radius of 3*10-5 vs. 10-7). According to the Mørk textbook, the rate of coaqulation of large particles can be 10°4 times larger than for smaller particles, so we can assume that the rate of coagulation/coalescence increases with increasing particle/drop size. (At least while using the coagulation model)