Exercise 1: a. A dispersion of negatively charged Agl particles is prepared using two different aqueous electrolyte solutions at 25°C: a) LiNO3 (165) and b) NaNO3 (140). The critical coagulation concentration (CCC) is given in parenthesis in mmol/l. For each electrolyte solution draw one particle and its immediate ionic environment, indicating the co-ions and counterions. Explain what the CCC is and why the CCC value of LiNO₃ is higher than that of NaNO₃. Draw the potential energy curves for two particles approaching each other in b. the case when the electrolyte concentration is above CCC and in the case when the electrolyte concentration is below CCC. Which of the two conditions would you describe as stable? Q) CCC is the minimum electrolyte concentration necessary for a dispersion to coagulate The reason why the CCC of LiNO3 is higher than NaNO3 is that Li is more lyotropic (Hofmaister series), and is more easily hydrated. This means that in order to have coagulation, it will take more Li-ions than Na-ions. Which in turn is why Li has the highest CCC LIN03 Na NO3 Water (attached to cation) = cction, Lit () = anion , I AgI AgI The Lit-ions are further from the stern layer due to having more water molecules attached to it than Nat-ions VR, = repulsive electrical double legir repulsion, for concentration below CCC 6 t VR2; above (CC) VR2 Pokentual of interaction Particle distance VA = attractive Van der Weel energy VI is when the electrolyte concentration is below CCC, there is an energy barrier preventing coagulation. V2 is when the electrolyte concentration is above CCC, the energy barrier (from the secondary minimum) is quite small, and the potential is negative, which means that particles will spontaneously move closer to each other, causing coagulation. Based on this, the system with an electrolyte concentration below CCC (VI), is the most stable.

Exercise 2 (or NEW): Colloidal gold particles dispersed in water at $20 \circ C$ were flocculated by adding NaCl. The radius of the gold particles was $R_S = 3,69$ nm. The number of particles where experimentally determined at different times, as shown in the Table below:

t (s)	120	195	270	390	450
N (cm ⁻³)	$11,2 \times 10^{8}$	$7,3 \times 10^{8}$	$5,4 \times 10^{8}$	$4,5 \times 10^{8}$	$3,7 \times 10^{8}$

Determine the second-order rate constant k_{exp} that describes the flocculation process.

Calculate the stability ratio (W). Based on W, what can you say about the stability of the dispersion?

	k_{I}	3 = 1	,38 ×	10 ⁻²³	I/K			$\eta =$	10 ⁻³	kg/n	ns					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	Fa	37	(00	gul	et)i	on :						2 N k2		•	•	•	•	•	•	2.5		-9 — Re Da	, gressio ta Poin	n line ts	•	•	•				•	•	•
•	•	•	•	•	•	•	•	•		•	•	٠	ų i	0	•	•	•	•	•	2.0 [Cm3] 1.7 1.5					/	•/	/						•
•	•	•	•	•	•		り,		- N]				•	0	•	•	•	•	•	1.2	25 -	/	/	•									•
e e	•	•	•	•	•	•	•	لـ ۱]]]	•	•	•	•	•	•				D	200	250	t [s]	300]	350	- 40		450	•	•
÷	•	•	•	•	•	•	•	•				- <u> </u> No		1	•	•].	- 1		12	(M	5	•	•	÷	•	•	0	•	•	0	•	•
•	•	•	•	•	•	•	•	•	₽lo i	₽ -	N Ø	igains	it .	t.,	510	pe =	: K2		<u>), ~ ·</u>				•	•	•	•	•	•	•	•	•	•	•
•	•	•		Ŵ		k2 k2	•	•	•	•	•		b g.	2 <u>m</u>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	k	;(1kg	T		1 - 15	38.	10-2	³ <mark>///</mark> 10 ⁻³	-		K	غ (5,4.1		m³/s	=5/	4.10 ⁻¹	2 (m ³ /	ß	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•		•	•	•		•	•	•	n \$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	°. ₩	<u> </u>	2 - 42-	<u>5,</u> δ,	440 2.10	12 CH	*** ***3	בי נ י	1,03	в =	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•			uite clo ating,						ċor	ncenti	ration	of el	ectro	lytes	in th	ie soli	ution	is at	CCC.	This	mea	ns th	at the	e sys	tem is	s veru	y člos	e to	•	•	•	•
		•	,									٠																		•			•
٠	•	•	•	•	•	•		•	•	·			•			•	٠	•		•	•	•	•		•			•	٠	•	•		•
٠	•	•	٠	•	•	•	•	•	٠	•	٠	•	•	٠	•	٠	٠	•	•	٠	•	•	٠	٠	•	٠	*	•	٠	•	•	٠	•
•		•			•	•	•	•		•	•	•	•		•	•	0	•	•		•	•		•	•		•		•	•		•	•
٠						•		•				٠					٠																
		•		•	•	•	٠	٠		•			٠		٠		٠		٠			٠			٠					٠			
٠	•	٠	0	٠	•	*	•	٠			۰	٠	•	٠	٠	٠	0	٠	۰	0	٠	•	0	·	•		٠		٠	•		٠	•
٠	٠	•	٠	•	•	•	•	٠	٠	·	٠	٠	·	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠		٠	٠	•
•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•			•	•							•										•											

Exercise 3: The number of oil droplets in an emulsion is measured to 9.5×10^{15} droplets/m ³ and average radius is $0.05 \ \mu m$. The droplets are stabilised by an anionic surfactant Na ⁺ R ⁻ with a bulk concentration of 1.5×10^{-3} mol/dm ³ . NaNO ₃ is added to the emulsion, resulting in a concentration of 0,004 mol/dm ³ . After 60 minutes the number of droplets were reduced to 8.9×10^{15} droplets/m ³ .	a) Using the expressions from problem 2
T = 25°C $k_B = 1,38 \times 10^{-23} J/K$ $\eta = 8,9 \times 10^{-4} kg/ms$	$\frac{1}{N} = \frac{1}{N_0} = \frac{1}{k_0} t$
 Determine the second-order rate constant (kexp) that describes the flocculation process. Calculate the stability factor W 	$= 7 k_{2} = \frac{1}{N} \frac{1}{N_{0}} = \frac{\frac{1}{3,9 \cdot 10^{15} m^{-3}} - \frac{1}{9,5 \cdot 10^{15} m^{-3}}}{\frac{1}{60 \cdot 60 \ s}}$
 b. If the resulting concentration is 0,01 mol/dm³ upon NaNO₃ addition, the stability factor is W = 1,9. 	$k_2 = 1,97 \cdot 10^{-21} \text{ m}^3/5$
Use the following three relationships to verify that the surface potential (ψ_0) is -32 mV:	· · · · · · · · · · · · · · · · · · ·
$\log W = K_1 \log c + K_2, K_1 = \left[\frac{-2,15 \times 10^9 T_0^2 R_s}{z^2}\right], T_0 = \frac{\left[\exp(\frac{ze\psi_0}{2k_B T}) - 1\right]}{\left[\exp(\frac{ze\psi_0}{2k_B T}) + 1\right]}$	$k_2^{p} = \frac{4k_BT}{3\eta} = \frac{4.1,38\cdot10^{-23}}{3.8,9\cdot10^{-4}} k_2 / m_{s}$
e = 1,6 × 10 ⁻¹⁹ C	$\chi_2^{\circ} = 6_1 6 \cdot 10^{-16} \text{ m}^3/3$
	$\frac{ \mathbf{k}_{\mathbf{\lambda}_{1}}, \mathbf{y}_{1} \mathbf{v} \mathbf{v}_{1}, \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{1}}{ \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{1$
$W = \frac{k_{2}}{k_{1}} = \frac{6.16 \cdot 10^{-16} \text{ m}^{-16}}{1.97 \cdot 10^{-21} \text{ m}^{-2/5}} = 3127$	
<u>·····<u>·</u>·····························</u>	· · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
6) We end up with 2 datapoints, and can determine	Ki and Kz
With CNAN03 = 0,004 M, CLot = 1,5.10-3 M + 0	$1004 M = 5.5 \cdot 10^{-3} M$
$\log 3127 = K_1 \cdot \log (5, 5 \cdot 10^{-3}) + K_2$	2
With CNANDE = 0,01 M, Ctol = 0,01 M+ 1,5,103 M =	Q0115
L_{03} (1,9) = K1 · Log (0,0115) + K2	
· · · · · · · · · · · · · · · · · · ·	
Solving for K, and Kz gives:	
K,= -10,04	
Kz= -44,19	
Rewriting the given equation:	

· · · · ·	$T_{0} = \sqrt{\frac{K_{1} Z^{2}}{-2_{1} / 5 \cdot 10^{9} \cdot R_{5}}} = \sqrt{\frac{-10,04 \cdot (-1)^{2}}{-2_{1} / 5 \cdot 10^{9} \cdot 0.05 \cdot 10^{4}}} = \frac{O_{13}}{-2_{13}}$	<u>.</u> <u>K</u>	· · · ·	· · · ·	· ·		· ·
18 fl	ne provided expression gives the some answer, then it is verified:	· · · · ·	· · ·		• •	•	• •
$T_{0} = [exp(exp(exp(exp(exp(exp(exp(exp(exp(exp($	$\frac{ze\psi_{0}}{2k_{B}T}) - 1] = \frac{e^{(\frac{(1)}{2} + \frac{1}{3} + \frac{10}{2} - \frac{10}{3} - \frac{10}{2} - \frac{(-32 \cdot 10^{-3} \text{V})}{2 \cdot 1, 35 \cdot 10^{-23} \text{ J/k} \cdot 295 \text{ K})} - 1}{e^{(\frac{(1)}{2} + \frac{1}{3} + \frac{10}{2} - \frac{10}{2} $	enough, most likely	a nounding er	 ฮา	· ·	•	· ·
particles/dm was investig	dispersion of negatively charged gold particles contains 6.3×10^{16} ³ . The radius of the particles is R _S = 10,3 nm. The coagulation kinetics ated by adding various amounts of Na ⁺ ClO4 ⁻ at 25°C. The following between the electrolyte concentration and the stability factor was found:	· · · · ·	· · · ·	· · ·	· · ·	• • •	· · ·
-)0/	c (mol/dm³) 0,002 0,003 0,005 0,008 W 48 31 17 8,9					•	• •
	is the half-time ($t_{1/2}$) of the dispersion if c = 0,002 mol/ dm ³ ? tate the reason for the resulting value of the half-time					•	
a)	Using the expressions from problem 2, assuming $N = 8,9$	10-4 kg/ms	(Blockboor	d anno uncemen	n 1)	•	• •
· · · · ·	$k_{2}^{p} = \frac{4 k_{B}T}{3\eta} = \frac{4 \cdot 1,38 \cdot 10^{-23} J/K \cdot 298 K}{3 \cdot 8,9 \cdot 10^{-4} k_{B}/m_{S}}$	· · · · ·	· · · ·	· · · ·	· ·		· · ·
• • •	$\frac{1}{12} = \frac{6}{16} \cdot 10^{-16} \text{ m}^{3/5}$				• •		
· · · · ·	$W = \frac{k_2^{\circ}}{k_2} \implies k_2 = \frac{k_2^{\circ}}{W} = \frac{6.16 \cdot 10^{-18} \text{ m}^3/\text{s}}{48} = 1,28 \cdot 10^{-14} \text{ m}^3/\text{s}$	· · · · ·	· · · ·	· · · ·	· ·		· · ·
· · · · ·	$\frac{1}{N} = k_{z} + -\frac{1}{N_{o}} \qquad A \neq t_{Vz}, N = 0.5 N_{o}$	· · · · ·	· · · ·	· · · ·	· ·	•	· · ·
	$= \left(\frac{1}{N_{2}} - \frac{1}{k_{2}} \left(\frac{1}{0.5N_{0}} - \frac{1}{N_{0}} \right) = \frac{1}{k_{2}} - \frac{1}{N_{0}} \right)$				• •	•	• •
· · · ·	$f_{1/2} = \frac{1}{k_2 \cdot N_0} = \frac{1}{1.26 \cdot 10^{-19} \text{m}^3/\text{s} \cdot 6.3 \cdot 10^{16} (\text{d} \text{m}^3)^{-1}} = 124 \text{s} \cdot \frac{\text{d} \text{m}^3}{\text{m}^3} = 124 \text{s} \cdot \frac{\text{d} \text{m}^3}{10^3} = 124 \text{s} \cdot \frac{\text{d} \text{m}^3}{10^$	O,124s	· · ·	· · ·	• •		••••
· · · ·	<u><u><u></u><u><u></u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u>	· · · · ·	· · · ·	· · ·			••••
с b (b)	The half-time is low.				• •	•	• •
· · · ·	This is most likely due to high concentrations of both gold particles and electrolyte, as well as causes rapid spontaneous coagulation.	the surface potential c	of the gold par	ticles having a c	≀uite low va	lue. This	· ·
						*	• •

agulation agent CaCl ₂ and adjustment of pH. The concentration of CaCl ₂ used in thickener is 100 mM. The thickener liquid has a viscosity of 10^{-3} kgm ⁻¹ s ⁻¹ , a nsity of 1000 kgm ⁻³ , a relative permittivity of 80.2 and a Hamaker constant (in cuum) of 3.7×10^{-20} J. The temperature is 20°C. The individual cells can be			•	•	•	• •		•	•	•	•	•	•
The coagulation/flocculation process takes place in a so-called thickener using the coagulation agent CaCl ₂ and adjustment of pH. The concentration of CaCl ₂ used in the thickener is 100 mM. The thickener liquid has a viscosity of 10^{-3} kgm ⁻¹ s ⁻¹ , a density of 1000 kgm ⁻³ , a relative permittivity of 80.2 and a Hamaker constant (in vacuum) of 3.7×10^{-20} L. The temperature is 20°C. The individual cells can be	••••		•	•	•	• •	•	•	•	•	•	•	•
assumed to be spherical, rigid and have a diameter of $1\mu m$. The Hamaker constant (in vacuum) of the cells considered is 6×10^{-20} J. The cell surface (phospholipid membrane) zeta potential, at the pertinent pH, is assumed constant at all times and equal to -15 mV. Any potential influence of steric stabilisation and retardation effects	••••	•	•	•	•	• •	•	•	•	•	•	•	•
can be neglected. $\epsilon_0 = 8.854*10^{-12} \text{ C}^{2}/\text{Jm}$					٠	• •	•			•			
 a. Calculate the composite (overall) interaction energy between two cells in the thickener when the closest distance between the surfaces of the particles is 0.1, 1, 2, 5, 10 and 25 nm. Comment on the stability of the cell dispersion. b. For economic reasons, it is suggested to replace CaCl₂ by MgCl₂ as coagulation agent and use the new salt at the same concentration as CaCl₂ 	••••	•	•	•	•	• •	•	•	•	•	•	•	•
was used in the thickener. Explain how this can be expected to affect the													
 efficiency of the coagulation process. c. Provide a crude estimate of the critical coagulation concentration of MgCl₂. Comment on the result. 	••••	•	•	•	•	• •	•	•	•	•	•	•	0
					•	• •	•		•				
$A_{12} = (A_{11}^{1/2} - A_{22}^{1/2})^2$	•••	•	•	•		• •	•	•	•	•	•	•	•
$A_{123} = (A_{11}^{1/2} - A_{22}^{1/2})(A_{33}^{1/2} - A_{22}^{1/2})$	• •	•	•	•	•	• •	•	•	•	•	•	•	•
	• •	•		•	٠	• •	•	٠	•		٠	٠	•
Need A121	· ·	•	•		•	• •		•	•	•	•	•	•
$A_{121} = (A_{11}^{1/2} - A_{22}^{1/2})(A_{11}^{1/2} - A_{22}^{1/2}) = (A_{11}^{1/2} - A_{22}^{1/2})$	-) 	•	•	•	•	• •	•	•	•	•	•	•	•
$A_{121} = \left(\left(\left(\cdot \right) 0^{-20} \right)^{0.5} - \left(3, 7 \cdot 10^{-20} \right)^{0.5} \right)^2 = 2,77 \cdot 10^{-21} = 2$	ļ	•	•	•	0 0	• •	•	•	•	•	e e	•	•
· · · · · · · · · · · · · · · · · · ·		•		· · · · · 2	۲°	• •	•	•	•	•	•	•	•
V_A for spheres: $V_A = -\frac{A \cdot R}{12 \cdot H} = \frac{2.77 \cdot 10^{-21} \cdot J \cdot 0.5 \cdot H}{12 \cdot H}$	0° m	_ = "	<u>[,15</u>	H	<u>• + + -</u>	•	•	•	•	•	•	•	•
This eq was used to fill out the table further beli	ó₩	•	•	•	0 0	• •	•	•	•	•	•	•	•
VR, must evaluate K.Rs	· ·	•		0n5:	ر د ا	, Z Z=	=+2 , -1 , [[(2 ²⁺] [(]]:] = 0,2	2 M	* * *	•	•
$X = \sqrt{\frac{1000e^2 N_A}{Ek_B T}} Z Z_i^2 C_i$	••••		•										•
$\mathcal{K} = \sqrt{\frac{1000 \frac{1}{100} \left[\frac{1}{100} + \frac{1}{100} \left[\frac{1}{100} + \frac{1}{100} \right] \left[\frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} \right] \left[\frac{1}{100} + $	• •	•	•	- <u>I</u> - 	•	• •		•	•	•	•	•	•
	$\frac{J}{10^{-6} \text{ m}} = \frac{1.15 \cdot 10^{-2.6} \text{ Jm}}{\text{H}}$												

• •	• • •				• •	• •	• •	•	•		•							
• •		$\xi = \xi_r \xi_s = g$	12. 5 54.10-12 (2/		• •	• •	• •		٠	•	•					·	•	
• •	VSING				• •	• •	• •		٠	٠	•		٠	٠	٠	٠	٠	٠
• •	• • •	Ro=015. MM.		• • •	• •	• •	• •	•	•	*	•		٠	•	٠	•	٠	•
• •	• • •	¥s = − 15 · 10 ⁻³	.γ	• • •			• •		٠	•	•	• •	٠	٠	•	٠	٠	•
										•	•		•	•	•	•	•	•
		We get Vr	in the table							•						•	•	
· · <u>-</u>		-					• •	•	٠				٠			•		
• •	Jhen: Vito	$f = V_{a} + V_{R}$, us	ing a script	we get	• •	• •	• •	•	٠	٠	•	• •	٠	٠	٠	٠	٠	٠
• •	H [nm]	V _A [J]	Vr [J]	Totel	[7]				•	•	• •		•	•	•	•	•	
• •	· Dil		3,05 · 10 ⁻¹⁹	- 8,48 .		• •				•	• •							
	·] ·	- 1,15 · 10 - 19	7,71.10-20	-3,81.		• •										٠		
• •		-5,76 - 10-20	1,37.10-20	- 4,40		• •		•		٠	•					•	٠	
	2 5	-2,31 · 10 - 20	6,35.10-23	- 2,30 .			• •	•		•	•					•	•	
			8,05.10 ⁻²⁷	- 1,15 . 1	0-20	• •	• •	•	•	•	•			•		٠	•	
	a 00 a	$1 - \frac{1}{10} 5 \cdot \frac{10}{20}$		- 4,6			• •	•	٠	٠	•		٠	•	٠	٠	٠	•
• •	25	-4,61.10-21	n Qu u	· - ·4,6)· ·] D	• •	• •		٠	•	•		٠	•		•	•	٠
• •	• • •						• •		·	٠	•	• •		٠	•	٠	٠	•
		gies are negative, this m	neans that coagulatio	n will happen	spontaneous	sly, as ther	e is no	positive	energy	barrie	r prev	venting	coagu	ation.	The	•	•	•
cell disper	rsion is therefore	e unstable.														•	•	
	• • •			• • •			• •			*								
	The tender	ncy of different ions	s to become hydr	ented varies	strongly	Thus on	ions a	nd			•			٠		•	•	
6)		be arranged in a lyc	-							٠	•				٠	٠	٠	٠
• •	power, a so	-called Hofmaister s	series:					٠		•	•				٠	٠	٠	
• •		ioner: $Mg^{2+} > C$				H_4^+		۰	•	•	•			•	•	٠	٠	٠
• •	· Ani	oner: Citrat ³⁻ >	$SO_4^{2-} > Cl^- > 1$	$NO_3^- > CN$	IS ⁻			٠	•	•	•		٠	•	٠	٠	٠	٠
	• • •			• • •			• •		٠	٠	•	• •	٠	٠	•	٠	٠	•
	-	neister series, magnesic e cells in the solution the		ily dissolved ir	nto the solve	ent than ca	lsium ioi	ns, and	therefo	rė, Mg	-ions	will		•		•	•	•
		ere will be less "shielding	" of the repulsive forc	es between t	he cells, cau	ising MgCl	2 to be	a worse	coagu	lation	agent	than						
	32							•		٠	•				•	•	*	
· The	coagulation will	be slower and/or less	of the cells will coagu	ulate. ·		• •	• •	•			•				٠			٠
• •	• • •				• •	• •	• •		٠	٠	•	•	٠	٠	٠	٠	٠	٠
• •	• • •				• •	• •	•	•	•	٠	•					•	•	•
C)	• • •		0,176	• • •		· ·	2		•		•	• •	٠	٠		•	•	٠
	From bable	$10.4: \frac{1}{1} =$	$\frac{Q_1176}{\sqrt{ccc^1}} \Rightarrow$		∍ (0,1,	76·JC)	· = (0,090	18	1	• •	• •			٠	٠	٠	•
		X	γω						•				•	•	•	•	•	•
	· • • • • • • • • •						• •	• •	٠	•						•	•	
	As MgCl2 is	a worse coagulation agei	nt than CaCl2, it is exp	pected that the	CCC of the	MgCl2-sy	stem is h	igher.	*	•	•		٠					
• •					• •	• •				•	•							
								•		٠	•				٠	٠	٠	•
	• • •	• • • • •		• • •	• •	• •	• •	•	•	•	•	• •	٠	٠	•	•		
							• •		•	•	• •	• •	•	•	0	•		
• •	· · ·		· · · · ·	· · ·	• •	• •			•	•	• •	• •	•		•	•	•	•
· ·	· · ·	· · · · · ·	· · · · ·	· · · ·	· · ·	· · ·	• •		•	•	•	· ·	•	•	•	•	•	•