
Exercise 4 The following surfactants were dissolved in aqueous solutions Sodium dodecyl sulfate (SDS): Anionic CH₃(CH₂)₁₁O-S -ONa Polyoxyethylene (20) sorbitan monolaurate (Tween 20): C OH Non-ionic w+x+y+z=20The dynamic (i.e. time dependent) interfacial tension between dodecane and aqueous solutions has been measured by the du Noüy ring method. The wetting diameter of the du Noüy ring is 18.7mm. The measurements resulted in the following data sets: Dynamic interfacial tensions: Dodecane – 4 mM SDS in pure water Dodecane – 4 mM SDS in 100mM NaCl Dodecane - Tween20 in pure water Dynamic force measurements: Dodecane - Tween20 in 100mM NaCl All the data were measured at 22°C a. Based on the chemical structure for Tween20 given above, what can you say about this compound? It is a non-ionic surfactant with a relativetely large head group. Its CPP is expected to be low due to the large head group taking up a lot of space. Convert the dynamic force measurements to dynamic interfacial tension. b. Assume that the du Noüy ring is completely wetted during the measurements. Plot the dynamic interfacial tensions of all five systems in the same figure. List the main information you can get about the systems from the figure. F=2.2mr $\Rightarrow \gamma = \frac{F}{2\pi r} = \frac{\mu N}{2\pi \frac{16.7}{2}} mm = \frac{\mu^3 mN}{2\pi \frac{16.7}{2}} mm^3$ mN/W 50 with dodecane [mN/m] 40 Pure water 4 mM SDS in pure water **2** 4 mM SDS in 100 mM NaCl 30 Tween20 in pure water Tween20 in 100 mM NaCl Interfacial tensio 20 10 0 20000 80000 40000 60000 Time [s] We can see that adding salt to the solutions decrease the interfacial tension. It decreases more for the anionic surfactant due to the salt ions being able to shield the head groups from the repulsive forces from other head groups. This makes it possible for more surfactants to be at the interface, which reduces the interfacial surface tension.

c. Plot the dynamic interfacial tension of the dodecane-water in one figure. Plot the dynamic interfacial tension of the Tween20 system in pure water in another figure.

4 mM SDS + NGCI nterfacial tension with dodecane [mN/m 5.0 4.8 30000 Time [s] 10000 20000 40000 50000 60000 Tween 20 en20 in pure γ≈ 5,23 mN/m 5.8 5.6 5.4 30000 40000 Time [s] 10000 20000 50000 60000 Theen20 + NaCl Tween20 in 100 mM NaCl with dodecane [mN/m] 9. 25 9. 8 <u>Y≈ 4,9 mN/m</u> 5.4 acial ten 5.2 1.0 Interf 40000 Time [s] 20000 60000 80000 e. Calculate the surface excess of surfactant for the four surfactant systems. Assume that the variation of interfacial tension with respect to concentration is linear. Tween 20 solutions $\frac{d \ln c}{dc} = \frac{1}{c} = \frac{1}{c} = \frac{1}{c}$ $\Gamma_2 = -\frac{1}{RT} \left(\frac{dr}{dlnc} \right)_T$ For dilute solutions $\int_{2} = -\frac{c}{RT} \left(\frac{d\gamma}{dc}\right)_{T}$ Assuming linearity $\int_{\mathcal{A}} = -\frac{c}{R_{T}} \left(\underbrace{\underbrace{\underbrace{\underbrace{y}}}_{C-C_{R}}}_{C-C_{R}} \right)$ SDS in woher For a strong electrolyte in a solution without other ions, it will dissociete $\Rightarrow \int_{2}^{-} = -\frac{1}{2RT} \left(\frac{dx}{dlnc} \right)_{T} \qquad \Rightarrow \int_{2}^{-} = -\frac{C}{2RT} \left(\frac{\gamma - \gamma}{c - c_{0}} \right)_{T}$

SDS in NaCl According to the "P. Mark textbook", adding ions increase the surface excess		o ,	• •			•	•
$\Rightarrow \int_{2} = -\frac{1}{RT} \left(\frac{dx}{dx_{nC}} \right)_{T} \Rightarrow \int_{2} = -\frac{C}{RT} \left(\frac{\chi - \chi_{0}}{C - C_{0}} \right)$		• •	• •	· 0	•	•	•
In the calculations, the pure water systems will be used as a reference.		• •	• •	• •	•	•	•
	р р	• •	• •			•	•
$\int_{2}^{3} = N \cdot m$ $\int_{2}^{2} = -\frac{C}{2RT} \left(\frac{\chi - \chi_{0}}{C - C_{0}} \right) = -\frac{4}{2 \cdot 8 \cdot 3^{14} \cdot \frac{3}{K - 1}} \cdot \frac{(17, 5 - 50, 88) \text{ m N/m}}{(4 - 0) \text{ m N}} \cdot \frac{1}{m} = \frac{6, 80! \cdot 10^{-6} \text{ mol/m}^{2}}{(5 - C_{0})^{-6} \text{ mol/m}^{2}}$		• •	• •	· ·	•	•	•
SDS in Nacl solution		• •	• •		•	•	•
$\int_{Z} = -\frac{C}{RT} \left(\frac{N-1}{c-c_{0}} \right) = -\frac{4}{8,314} \frac{M}{K_{rel}} \cdot \frac{(5,5-50,88) \text{ m N/m}}{(22+2.73,15)K} \cdot \frac{(1-1)}{(2-1)} = \frac{1}{10} \frac{1}{10} = \frac{1}{10} \frac{1}{10} \frac{1}{10} = \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} = \frac{1}{10} \frac{1}{10}$		• •	• •		•	•	
$\frac{\text{Tween 20 in pure worker'}}{\left[\sum_{2} = -\frac{C}{RT} \left(\frac{1}{C} - \frac{1}{C_{0}}\right) = -\frac{4}{8/3!4} \frac{3}{\frac{3}{K_{rel}}} (22 + 273.15) \frac{(5,23 - 50,88) \text{ m}}{(4 - 0) \text{ m}} \frac{1}{m} = \frac{1.860 \cdot 10^{-5} \text{ mol/m}^{2}}{1.860 \cdot 10^{-5} \text{ mol/m}^{2}}$		• •	• •	· ·	•	•	•
Tween 20 in Na(1 solution		• •	• •			•	•
$ \int_{Z} = -\frac{C}{RT} \left(\frac{1}{c} - \frac{1}{c_{0}} \right) = -\frac{4 m M}{8,314 \frac{3}{16}} \cdot \frac{(4, 9 - 50, 88) m N/m}{(22 + 273,15) K} \cdot \frac{(4, 9 - 50, 88) m N/m}{(4 - 0) m M} = \frac{1,874.10^{-5} mol/m^{2}}{10^{-5} mol/m^{2}} $		• •	• •	• •	•	•	•
 f. Calculate the molecular area for the four surfactant systems. What is your interpretation when comparing the molecular areas with and without salt for the anionic surfactant? What is your interpretation when comparing the molecular areas with and without salt for the nonionic surfactant? What is your interpretation when comparing the molecular areas for the 		• •	• •	· ·	•	•	
anionic and nonionic surfactants in pure water?		• •			•	•	•
	∫ _A =	60	22.10) ²³ ma	9 ⁻¹	•	•
anionic and nonionic surfactants in pure water? The area per molecule in the interface can be calculated using $A = T \cdot N_A$, N SDS in water	∫ _A =	6,0	22.10) ²) mi	ol ⁻¹	· · ·	•
anionic and nonionic surfactants in pure water? The area per molecule in the interface can be calculated using $A = \overline{\Gamma \cdot N_A}$, N <u>SDS in weter</u> $A = \frac{1}{6,801 \cdot 10^{-6} \text{ mol/m}^2 \cdot 6,022 \cdot 10^{23} \text{ mol}^{-1}} = 2,44 \cdot 10^{-19} \text{ m}^2 = 0.244 \text{ nm}^2$ <u>SDS in Nacl</u>	∫ ₄ =	6 ,0.	22 . 10	τ τ τ τ τ τ τ τ τ τ τ τ τ τ	, - 	•	· · · ·
anionic and nonionic surfactants in pure water? The area per molecule in the interface can be calculated using $A = \frac{1}{\Gamma \cdot N_A}$, N <u>SDS in weter</u> $A = \frac{1}{(0,80) \cdot 10^{-6} \text{ mol/m}^2 \cdot (0,022 \cdot 10^{23} \text{ mol}^{-1})} = 2,44 \cdot 10^{-19} \text{ m}^2 = \underline{0,244 \text{ nm}^2}$ <u>SDS in Nucl</u> $A = \frac{1}{1,849 \cdot 10^{-5} \text{ mol/m}^2 \cdot (0,022 \cdot 10^{23} \text{ mol}^{-1})} = 5,96 \cdot 10^{-20} \text{ m}^2 = \underline{0,0893 \text{ nm}^2}$	∫ _A =	6,0	22 · IC		• • •		
anionic and nonionic surfactants in pure water? The area per molecule in the interface can be calculated using $A = \overline{\Gamma \cdot N_A}$, N <u>SDS in weter</u> $A = \frac{1}{6,801 \cdot 10^{-6} \text{ mol/m}^2 \cdot 6,022 \cdot 10^{23} \text{ mol}^{-1}} = 2,44 \cdot 10^{-19} \text{ m}^2 = 0.244 \text{ nm}^2$ <u>SDS in Nacl</u>		6,0)))))))))))))))))))	, -		

Typen 20 in NaCl

= 8,86 $A = \frac{1}{1.874 \cdot 10^{-5} \text{ mol/m}^2 \cdot 6.022 \cdot 10^{23} \text{ mol}^{-1}}$

- Comparing SDS in pure water and in NaCl solution, we see that the molecular area is larger in pure water. This means that SDS has a low packing parameter in water solutions, but in salt soultions it can be packed more densely together (due to the extra ions blocking the repulsions between the headgroups) - Compraring Tween20 with and without salt, there is a slight decrease in the molecular area after adding the salt. This means that the surfactants are packed more densely in the salt solution, but not much. This might be because the salt ions prefer to be in the water solution instead of the surface, which in turn means that there is less room in the bulk. This might cause a tiny increase in the amount of surfactants in the interface. - The molecular area of SDS is larger than Tween20. This is due to repulsive forces between the head groups in SDS, Tween 20 does not have similar repulsive forces. For this reason, Tween 20 can be packed more densely than SDS in pure water solutions. Estimate the CPP of the surfactant molecules. What is the possible shape of the surfactant molecules? V_{surf}(nm³) = (0.0274+0.0269n) m $I_{\rm C}$ (nm) = (0.154+0.1265n) where n is number of carbon atoms in the hydrocarbon chain and m is the number of hydrocarbon chains. Finding n and m: α_0 - I_c-V_{surf} - I'm not sure how to determine n and m, but as far as I can tell (from the picture above), We are only looking at the tail group Tween 20 Tail: 11 C (not sure if the or - carbon should count) => n= 11 Only one tail => m= | => Vsurf = (0,02.74 + 0,0269 · 11) · 1 = 0,3233 nm³ $l_{c} = (0,154 + 0,1265 \cdot 11) = 1,5455 \text{ nm}$ <u>505</u> 12 (=> n=12 $CH_3(CH_2)_{11}O - S - ONa$ | Chain => m=| $l_c = (0,154 + 0,1265,12) = 1,672$ nm

 $=0,0886 \text{ nm}^2$

• •	water																							
• •					*		\sim																*	
										0		٠												
	Vente	۰ <u>()</u> ۲	502 m	n ³ .		Λ nτ	d ·).					•										
PP =	Vsunt Koll	<u>= प</u>	-1 m ² 1 /	(7)	=	U, 85	<u>b</u>																	
	NO IC	0,~1	17100 116	o t																				
- 5Π5 :	n NeCl	•	• •			•		•	•	٠	• •	•		•	• •	•		•	•	•	•	•	•	
<u> </u>	<u>n ivevi</u> -	•	• •	•	•	•	•	٠	·	•	• •		•	•	• •	٠	•	•	٠	•	•	٠	•	
• •	 \/ c	م	 75.00	3	٠	•	•	٠	•	•		٠	٠	٠	• •	٠	٠	•	٠	٠	•	٠	•	
, DD =	<u>Vsurf</u> Xoll	,,,,,,,,,	5502 V	<u>1m</u>	• =	2,32			•	0	• •	Moi	tah tha	A system	ns to the	oorroor	ondine		Valuor		•	•	•	
		0,08	98 nm:•	,672 n	<i>m</i>	•	•	٠		٠	• •			of 4mN		corresp	Jonaing	, 011	values	3		A. 0.	85	
• •			• •		٠	•		٠	1		· ·				/I SDS w		:1					В. 2. С. 2.		
ween20	in water	•			٠			٠	7	^ر م	~~ v			-	rbate 20 rbate 20		aCl					D. 2.		
	Vent	. (), 3233	3 NM		·																		
CPP	<u> </u>	 	892 m ²	1.545	— : 5mm		JA																	
•		010	015 11	110 100																				
ween20	 	•	• •	•	•	•	• •	*		•	• •	۰	•	•	• •	٠	•	•	•	•	•	•	•	
	• .	*	• •	•	•	•	• •	٠		٠	• •	٠	•	٠	• •	٠	•	•	•	•	•	•	•	
 າດດ –	Vsurf Xplc	<u></u> `_(),	3233	ทท่ำ	- =	2,3	6	•			• •	•	•	•	• •	•	•	•	•	•		•		
.+++ =	Xolc	0,08	386 nm²·1	1,5455	nmi		<u> </u>	\ [.]	J	٠	• •		٠	•	• •	•		٠	٠	•	•	٠	•	
• •			• •	•		•		~	<i>.</i>	•			•	•										
	• • •				•							٠		٠				•						
S in water,	has CPP be	itween C).5 and	l, this	indica	ites a	trunca	ted co	one sh	ape of	the sur	factar	nt mol	eçules.	(Flexik	ole bila	yers)							
		••••••			•.			-					• .			, •				• .				
	e molecules f	has CPP) above l	l, this	indica	tes tha	at the s	surfac	tant n	nolecule	es has a	an inv	erted	trunca	ted cor	ne (we	dge) s	shape	e. (Inv	erted				
elles) "	• • •	٠	• •	•	•	•	• •	•	•	0	• •	٠	٠	•	• •	٠	•	•	۰	•	•	۰	•	
• •	• • •	•	• •	•	*	•		•	•	•	• •		•	•	• •	•	•	•	٠	•	•	٠	•	
	h	Based	on the	nlots	from		tion h	whi	ch sv	stem/	v ob (a	ou th	ink w	ould c	live									
• •	h.	Based the mo	l on the ost stab									ou th	ink w	ould g	ive .			٠	٠			٠		
	h.											rou th	ink w	ould g	ive	•	•	•	•	•	•	•	•	
· ·	· · ·	the mo	ost stab	ole en	nulsio	n upo	on em	ulsific	ation	? Why	/? · · ·	•	ink w	ould g	ive	•	•	•	•	•	•	•	•	
	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive .	•	•	•	•	•	•	•	•	
interfacial	· · ·	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive .		•	•	•	•	•	•	•	
	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive . 	•	•	•	•	•	•	•	•	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive .	•	•	•	•	•	•	•	•	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive .	•	•	•	•	•	•	•	•	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive .	· · ·	•	•		•	•	•	•	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive .	•	•			•			· · ·	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive	•	• • • • • • •						· · · ·	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive								· · · · · · · · · · · ·	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive								· · · · · · · · · · · · · · · · · · ·	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive		• • • • • • • • •						· · · · · · · · · ·	
nterfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive		• • • • • • • • • •						· · · · · · · · · · ·	
nterfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive		• • • • • • • • • •						· · · · · · · · · · · · · · · · · · ·	
nterfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive		• • • • • • • • • • • •						· · · · · · · · · · · · · · · · · · ·	
nterfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive		• • • • • • • • • • •						· · · · · · · · · · · · ·	
nterfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive								· · · · · · · · · · · · · · · · · · ·	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive								· · · · · · · · · · · · · · · · · · ·	
nterfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive		••••••••••••••••						• • • • • • • • • • • • •	
nterfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive								• • • • • • • • • • • • •	
nterfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive								· · · · · · · · · · · · · · · · · · ·	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive								• • • • • • • • • • • • • • • • • • • •	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive								• • • • • • • • • • • • • • • • • • • •	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive								· · · · · · · · · · · · · · · · · · ·	
interfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive									
nterfacial	in 100 mM 1	the mo NaCl will	ost stab I most lik	ole en Kely giv	nulsio ve the	n upo most	on em stable	ulsific emulsi	ation	? Why a it has	/? the lou	vest	•	ould g	ive								••••••••••••••••••	

To measure the surface tension of a liquid, a thin cylindrical wire of r = 1 mm radius and l = 1 cm length is dipped horizontally into the liquid (see figure). The force required to pull the wire out of the completely wetting liquid is measured to be 0,49 mN. What is the surface tension of the liquid?

Fy + Fr + mg = Fmeasured ↓1 cm Assuming that the measurement corrects for bourney and the weight of the wire FL ing $F_{\gamma} = 2(l+2r) \cdot \gamma \cos \theta - 2(l+2r)$ $\gamma = \frac{0.49 \text{ mN}}{2(1+2r)} = \frac{0.49 \text{ mN}}{2(0.01 \text{ m}+2.16^3 \text{ m})} = \frac{20.42 \text{ mN/m}}{20.42 \text{ mN/m}}$

A 3M aqueous NaCl solution has the surface excess $\Gamma_2^1 = -3 \cdot 10^{-11} mol/cm^2$. 3 Assume that the surface tension of the solution varies linearly with the salt concentration. γ (water) = 72,8mN/m. Calculate the surface tension of the solution. Explain why the surface excess is negative a. b. $\frac{dlmc}{dc} = \frac{1}{C} \implies \frac{1}{dlmc} = \frac{c}{dC}$ $(a) \qquad \int_{2}^{b} = -\frac{1}{2RT} \left(\frac{dx}{dT_{n}} \right)$ $-\frac{c}{2RT}\left(\frac{dy}{dc}\right)_{T}$ Ŧ $\int_{2} = -\frac{C}{2RT} \frac{f'}{f_{c-c_{n}}}$ Assume 25°C = 298 K $\Rightarrow \gamma = \gamma_0 - \frac{\Gamma_2(C-C_0)}{C} 2RT$ $\gamma = 72,8 \text{ mN/m} + \frac{3 \cdot 10^{-11} \text{ mol/cm}^2 \cdot (3 - 0) \text{ mol/c}}{3 \text{ mol/c}} 2.8,314 \text{ N/m} \text{ mol/c} \text{ K} \cdot 293 \text{ K} \cdot (10^2)^2 \frac{\text{cm}^2}{\text{m}^2} \cdot 10^3 \text{ mol/c}$ Converb x=74,29 mN/m 6, . The salt ions are hydrophilic, and in a water solution; they will prefer to be in the bulk phase rather than the surface of the liquid. This means that the concentration of salt ions at the surface is less than the concentration in the bulk. If the concentration of salt ions at the surface is more than or equal to the concencentration in the bulk, the ions will migrate to the bulk the reason why the surface excess is nenative

					actant CMC (ppm)					Kraf	ft te			ure (°	'C)			-	-						-			•	
					12 14			2300 700		_			10 28					•	•	•	•	•	•	•	•	٠	•	•	•
٠					16			190		-			44					•	٠	•		٠	•	•	٠	٠		٠	•
•					18			50					62					•	•			٠						٠	
	14/1		lfata .									ام مادم					.					٠	٠						
•		nich su nimum							ou a	re in	itere	sted	in c	lean	ling v	vith ti	ne	٠	٠	٠	٠	0	٠	٠	٠	٠	٠	0	
•		[1]•	 				•	vith the		al na	ihle		Դ เป	tok o				. dan	en de	an th							٠	٠	
•	٠	temper	• •	•	*	*	•		lôme	st po	RRIDIE		wn. ک	nců o	ine we	can (noos	e debi	enas	οriπ	е.	٠	٠	•				٠	•
•	•		• •	•	•	•	٠	•	•	•	٠	•	•		•		•		•		•	•	•	•		٠		•	•
•	•	Cl2 is	one o	f the u	vorst	choice	es in a	almost a	ll ca	ses, a	as it i	s beat	ten by	y Cl4	1 for n	nost n	iorma	l temp	oeratu	res.	•	•	•	•	•	•	•	•	•
		For cle	eaning	by hạ	nd, Ç	14 mig	ght þe	the bes	t cho	oice, a	as it l	haş a	kraft	temp	oeratui	re of 2	28 de	egrees	s, whi	ch is	not v	iery							
		warm	water,	and t	he CN	AC is	lower	than fo	r Cl2	<u>)</u> .	•												٠					٠	
		For a	washin	q mác	ehine (on the	high	tempera	ture	progr	ams,	C18 i	is the	e best	choic	e, as [.]	for hi	gh"ten	npera	tures,	it is	able	٠		٠	٠		٠	
				-			-	e lowest										•				٠	٠					٠	
٠	•	٠	• •	•	٠	•	•	٠	•	•	•	٠	٠		٠	•	•	•	•	•		٠	•	٠				٠	
•	•	٠	• •	•	٠	٠	٠			•		٠	•	•	٠	٠	٠	·	•	٠	•	۰		٠	٠	٠	•	٠	
•	•		• •	•	٠	۰	•		•	•	٠	٠	•			٠		•	•			٠	٠	•			٠		
•	•	٠	• •		•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•		•	•	•	•	•		٠	
•		•	• •		•	•	•	0			•	•			•	•						•	•			•	•	•	
								٠																					
		٠													٠														
					٠		٠				٠	٠				٠	٠			٠		٠				٠		٠	
•			• •		•	٠		٠			٠	٠			•	•						•	٠					٠	
•		٠	• •		•		•	0	•	•	٠	•	•			•	•	•	•		•	•	•	•	•	٠	•	•	
		•																											
		٠																											
•			• •		٠							۰										٠					٠		
								•			•					•						•	٠					٠	
•		٠	• •		•		٠	٠			٠	•				٠	٠	•		٠	•		٠		٠	٠	•	٠	
		•																											
		•																											
							٠				0		٠			٠	٠	٠	٠	٠		0		٠		۰	٠	0	
٠							٠	•																					
•	•		• •		•	٠		٠	•		٠	٠	•		٠	•			•			٠	٠					٠	
		٠																											
		•																											