

() For high pressures, the isotherms increase	<pre>pimport numpy as np</pre>
along an asymptote. For low pressures V goes towards	<pre># Defining the given data and the gas constant Pc = 4.604 # [MPa] Tc = 190.6 # [K] omega = 0.011 # [-] Accentric factor Pc = 0.724 # [2/52] K] an [MD24577 (52) K]</pre>
infinity. The isotherms "merges" at high and low pressures	<pre>R = 8.314 # [J/mol*K] or [MPa*cm3/mol*K] # Wish to have 4 isotherms, choosing similar ones to the Tr = np.array([0.8, 0.9, 1, 1.1]) # [-] T = Tr * Tc # [K] The temperatures used in the EOS</pre>
In the "mid-range", there are more than one solution to the EOS.	<pre># Defining the constants in the van der Waals EOS a_vW = 27 / 64 * (R * Tc)**2/Pc b_vW = R * Tc / (8 * Pc) 7</pre>
(1) Small molar volumes, high pressures asymptotic limit where $p \rightarrow \infty$	<pre># Defining the constants in the Peng-Robinson EOS kappa_pr = 0.377464 + 1.54226 * omega - 0.26992*omega**2 b_pr = 0.07780 * R * Tc / Pc # Defining the constants in the Soave-Redlich-Kwong EOS # Defining the constants in the Soave-Redlich-Kwong EOS</pre>
Large molour volumes, pressure tends	<pre>kappa_srk = 0.480 + 1.574 * omega - 0.176 * omega ** 2 b_srk = 0.08664 * R * Tc / Pc</pre>
to zero 20 27	<pre>b # Defining the EOS as functions of molar volume and tempe def P_vW(V, T):</pre>
(11) Above the critical temperatures,	
	2 Preturn P
the isotherms behave linearily and are 1-to-1	<pre>3 4</pre>
Below critical temperatures,	8 9
the isotherm will have a 3-root	e preturn P
region where there is a "wave"	
region, where there is a "wave" causing there to be 3 roots	<pre>4</pre>
and the second second second	8 9
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	<pre>4 # Creating the plots: 5 V_list = np.linspace(45, 1e5, 25000)</pre>
	<pre>6 fig = plt.figure() 7 ax = fig.add_subplot(1, 1, 1)</pre>
- · · · · · · · · · · · · · · · · · · ·	8 offor i in range(len(Tr)):
	<pre>9 isothermT = T[i] 0 Tr1 = Tr[i]</pre>
	<pre>P_list = P_vW(V_list, isothermT)</pre>
	2 #P_list = P_pr(V_list, isothermT, Tr1) 3 #P_list = P_srk(V_list, isothermT, Tr1)
	4 A ax.plot(V_list, P_list, label=f"Tr = {Tr[i]}")
	5 ax.set_xscale('log')
	7 plt.ylim(0, 10)
	<pre>8 plt.grid(True) 9 plt.xlabel(r"v [cm\$^3\$/mol]")</pre>
	<pre>9 plt.xlabel(r"v [cm\$^3\$/mol]") 0 plt.ylabel("P [MPa]") .</pre>
	<pre>plt.title("Van der Waals") </pre>
	2
	4 plt.legend()
	5 nlt show()

| Roots of cubic EOS

2 Roots of cubic EOS		•	•	• •	٠	٠	•	٠	٠	٠	•		٠	
		•	•	• •	٠				٠	•	٠	•	٠	
The Peng-Robinson equation of state (EOS) can be written as a cubic equation in terms of the compressibility	٠	•	•	• •	٠	٠		٠	٠		•	٠	٠	
factor, Z, as $Z^{3} + (B-1)Z^{2} + (A-3B^{2}-2B)Z - AB + B^{3} + B^{2} = 0 $ (1)		•	•	• •	٠	٠	•	•	•	•	•	•	•	۰
where	0	•	•		0	•		•	•			•	•	
$Z = \frac{Pv}{RT}, A = \frac{aP}{(RT)^2}, B = \frac{bP}{RT}$					٠									
Here, v denotes the molar volume, P the pressure, R the gas constant, and T the temperature. Furthermore, a and b are parameters of the EOS.	0	•	0	• •	٠	•	•	٠	۰	•	•	٠	٠	٠
a) Consider CO ₂ at $T = 216.104$ K and $P = 1.0$ MPa. At this condition, $A = 0.1517$ and $B = 0.0148$.		•	•	• •	٠				٠		•	•	•	•
Determine the roots of (1) using the analytical procedure given in appendix A. Compare the results with NumPy's function <i>roots</i> .	0		•		•	•		•	•				•	•
b) Consider CO ₂ at $T = 216.104$ K and $P = 3.0$ MPa. At this condition, $A = 0.4552$ and $B = 0.0445$. Determine the roots of (1) using the analytical procedure given in appendix A. Compare the results with		•	•		٠			•				٠	٠	
NumPy's function <i>roots</i> .		•	•		٠				٠				٠	
c) If the program returns imaginary numbers in the above problems, use <i>imag</i> and <i>real</i> from the NumPy library to eliminate the imaginary numbers and only provide the real roots as output (see appendix B).	0	•	•	• •	٠	٠		٠	٠		•	•	•	
d) The saturation pressure of CO ₂ is 0.5 MPa at $T = 216.104$ K. Which phase(s) is/are stable and what is/are	•	•	•		•	•	•	•	•	•	•	•	•	•
the molar volume(s) of the stable phase(s) for CO ₂ in task a) and b)?			•											
a) Using the analytical approach, implemented in	مأمر	74	٠	• •	٠				٠			٠	•	
() (Sing the unarguent approved informatively in	Pyton	01	•	• •	۰	٠		٠	٠	•			٠	
$\wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge $	0	•	•	• •	•				•		•	•	•	٠
Q = 0,06737	•		•			•	•	•	•	•		•	•	•
R = -0,01649	٠	•	*	• •	٠							٠	•	
$(1 1 1 2 0^3 \times T)$			•											
Get that $R^2 < Q^3 \implies$ Three roots	٠	•	0	• •	0	٠	٠	٠	0	٠	٠	٠		
$\hat{\Theta} = 2,602$	•	•	•		•	•		•	•			•	•	•
		•	•	• •		٠		٠	•	•		٠	۰	
$Z_1 = 0,0197$		•	•	• •	٠				٠			٠	٠	
$Z_2 = 0.8442$	0	•	•		•			٠	•			•		
	•	•	•		•	•	•	•	•	•	•	•	•	•
$Z_3 = \hat{O}_1 2 3$	0		•											
	٠	•	•					٠						
Using a Numerical approach:	۰	•		• •	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	•	•	•		•	•	•	•	•	•	•	•	•	•
$Z_{1} = 0,8442$			•											
$Z_{2} = O_{1}[2]3$		•	•	• •		٠	•	٠	٠	•		٠	٠	٠
	٠	•	٠	• •	٠	٠		٠	٠	•	•	٠	٠	٠
$Z_3 = 0.0197$	•	•	•		•	•	•	•	•	•	•	•	•	•
	0		•		*			*						
$T_{a} = T_{a}$	10	•	1	 D	-(6	٦.	٠	٠		٠	٠			
The answers are almost exactly equal (dow	٩.	to	, Ç	· · ·] .		٠						
	٠	•	•	• •	٠			•	٠		•	•	•	٠
	0		•		•	•	•	•	•	•	•	•	•	•
		٠	•	• •	0	٠	٠	٠	٠	٠	٠	٠	٠	
		•	٠	• •					٠			٠	•	

	This problem gave imaginary numbers in the np imag and np. red was used.		erical	solution,	50		•
		· · ·		· · ·		• •	•
. Ar	alytical solution:		• •			• •	*
• •	Q = -0,0186						•
	R=0,0160						•
• •	U = -0,3179		• •			• •	•
	V = 0.0586						•
							•
	$Z_{1} = 0.0592$		• •			• •	*
· ·			• •		• • •	• •	•
	Vumerical Solution						•
	$Z_1 = 0,0592$					•	•
	· · · · · · · · · · · · · · · · · · ·		• •		o o o	o -	•
•	The solutions differ by 3e ⁻¹⁷					•	•
		 . . .	 \ }	· · ·	 		•
d)	As we have P>Pset in both a)	and b), <u>1</u> W	Stable	phase) 	•
• •	is the liquid phase => Use the i	smallest	V	and Z)		•	*
	· · · · · · · · · · · · · · · · · · ·			• • •		•	•
	We have that $Z = \frac{P_V}{RI} \Rightarrow V = \frac{ZRT}{P}$	<u> </u>	• •			• •	•
		• • •					•
	Solving for the smallest solution (root) of ea	ch proble	em:	• • •			
	For a) $V = 35,516 \text{ cm}^3/\text{mol}$		• •			• •	•
	For b) $V = 35,459 \text{ cm}^3/\text{mol}$		• •				•
• •							

```
The code used in the problem:
import numpy as np
#B = 0.0445
                # [MPa]
R_gas = 8.314 # [J/mol*K] or [MPa*cm3/mol*K]
# Calculating the parameters in the analytical approach:
alpha = B - 1
beta = A - 3 * B ** 2 - 2 * B
gamma = -A * B + B ** 3 + B ** 2
Q = (alpha ** 2 - 3 * beta) / 9
R = (2 * alpha ** 3 - 9 * alpha * beta + 27 * gamma) / 54
print(f"0 = {0}")
print(f"R = {R}")
if R ** 2 < Q ** 3:
    theta = np.arccos(R / np.sqrt(Q ** 3))
    Z1 = -2 * np.sqrt(Q) * np.cos(theta / 3) - alpha / 3
    Z2 = -2 * np.sqrt(Q) * np.cos((theta + 2 * np.pi) / 3) - alpha / 3
    print(f"Z1 = {Z1}")
print(f"Z2 = {Z2}")
    U = -np.sign(R) * (np.abs(R) + np.sqrt(R ** 2 - Q ** 3)) ** (1/3)
       V = 0
    print(f"U = {U}")
    x1 = (U+V) - alpha/3
p = [1, alpha, beta, gamma]
r_real = np.real(r[index])
    print(f"Z{i+1} = {r_real[i]}")
v = min(r_real)*R_gas*T/P
```