Exercise 12

Problem 1: Modeling and simulation of a flash tank with cubic EOS

In this problem we will model and simulate an isothermal flash tank using the Soave-Redlich-Kwong EOS with the following mixing rules:

$$b_{ ext{mix}} = \sum_i x_i b_i$$
 $a_{ ext{mix}} = \sum_i \sum_j x_i x_j (1-k_{ij}) \sqrt{a_i a_j}$

A binary system of pentane and heptane is to be considered. A partly completed code is attached. The main objective of this problem is to complete this code. The parts that need to be completed are marked with !...!.

- a) List the required equations that are needed to solve a flash problem with a cubic EOS (here we use Soave-Redlich-Kwong).
- b) Use the equations from a) to assist you in completing the attached code. Hint: The successful code results in, e.g., $x_2 \approx 0.6$.

vthon code: Flash_EOS_SRK_StudentVersion.pv		• •	•	•	• •	*	• •	٠	•
a) Similarily to racult's law, the following equations	are	nece	550.11		• •	•	• •	•	•
Assuming the feed F=1, then	•) - -		• •	•	• •	•	•
• Total mole balance; F = V + L = 1 (1)	•	•••	•	•	• •	•		•	÷
· Component mole balances	•	• •	•	•	. We also	, need	ki = <u>94</u>	•	•
$Z_i = Vy_i + Lx_i$ (2) As shown in previous	exer	cises, th	ısı egn	ations	can be i	combin	ed into:	•	•
• Normalization: $5_{4i} = 1$ (3) Applying (3)	<u>zi ki</u> + V(ki		5 0	•	• •	•	••••		•
Ex:=1 (9)]= E From VLE-model for rubic EOS	Z: +V	<u>k:</u> !(k:-1)	<u>(56</u>)	•	• •	•			•
$\int_{J,V}^{mix} = \int_{J,L}^{mix}, \text{Where} \begin{cases} \int_{J,V}^{mix} = \mathcal{Y}_{J} \mathcal{Y}_{J,V}^{mix} P \\ \int_{J,L}^{mix} = \mathcal{X}_{J} \mathcal{Y}_{J,L}^{mix} P \\ \int_{J,L}^{mix} = \mathcal{X}_{J} \mathcal{Y}_{J,L}^{mix} P \end{cases}$	•	· ·		•	· ·	•	· · ·	•	•
$\Rightarrow y_{i} \varphi_{i,v}^{\mu i \times} = \chi_{i} \varphi_{i,L}^{\mu i \times} $	•	• •			• •	•	· ·	•	•
. The definition of the k-value:	•	• •	•	•	• •	•	· ·	•	•
$k_i = \frac{y_i}{x_i}$, Combining with 6 gives:	•	• •	•	•	• •	•		•	•
$k_{\lambda} = \frac{\varphi_{\lambda,L}^{(m)}}{\psi_{\lambda}, \psi_{\lambda}^{(m)}} \qquad $	•	• •	•	•	• •	•	• •	•	•
. The pi can be determined using the equation below:	0						- 0	•	•
$ \lim_{P} \int_{P} = \ln \psi_{i} = (Z-1) \frac{B_{i}}{B_{rix}} - \ln (Z-B_{rrix}) - \frac{A_{rrix}}{B_{rrix}} \left(\frac{2\sqrt{A_{i}}}{\sqrt{A_{rrix}}} - \frac{U}{B_{rrix}} \right) $	<u>};</u> m/x)	$ln\left(\frac{\overline{z}}{z}\right)$	<u>? + Bmi</u> Z	<u>+</u>	Ø	•		•	•

Yì

X;

V

Ľ

F=1

Z;

. In order to start the iteration, we need a guess for ki, a reason	able	guess	ا دا	raouHs	Jon :	0 0 0 0	e e	•
$k_i = \frac{p_i^{\text{sat}}}{p} \qquad \qquad$	• •	•	• •	• •		• •	•	•
. The nessecury SRK-parameters can be found using:	• •	•	• •		• •	• •	•	•
already $\alpha_{mix} = \sum \sum x_i x_j ((-k_{ij})) \sqrt{a_i a_j}$	• •	•	• •	• •		• •	•	•
buix = Z xib:		•	• •			• •	•	•
$A_{mix} = \frac{a_{mix}p}{(RT)^2}$	• •	•	• •			• •	•	•
$B_{mix} = \frac{L_{mix}P}{RT}$	• •	•	• •	• •	• •	• •	•	•
$A_{i} = \frac{\alpha_{i} p}{(p\tau)^{2}} \qquad $	• •	•	• •	• •	• •	• •	•	•
$B_{i} = \frac{b_{i} p}{QT}$	• •	•	• •	• •	• •	• •	•	•
		•	• •			• •	•	•
• The polynomial coefficients for the SRK-EOS, $C_0 Z^3 + C_1 Z^2 + C_2 Z + C_3 = 0$:		•				• •	•	•
$\begin{array}{c} \zeta_{\mathfrak{v}} = \\ \zeta_{\mathfrak{v}} = - \\ \zeta_{\mathfrak{v}} = - \\ \end{array}$	• •	•	• •			• •	•	•
$C_{2} = A_{mix} - B_{mix} - B_{mix}^{2}$ $C_{3} = -A_{mix} \cdot B_{mix}$	• •	•	• •		• •	• •	•	•
We also need an equation for guessing new K-values		•	• •			• •	•	•
A) equilibrium, $f_{i,v} = f_{i,L}^{mix}$	• •	•	• •	• •	• •	• •	0	•
$y_i p_{i,v}^{\text{mix}} p = X_i V_{i,i}^{\text{mix}} p$	• •	•	• •	• •	• •	• •	•	•
$\Rightarrow \frac{y_{i}}{x_{i}} = K_{i}^{eq} = \frac{y_{i}^{en/x_{i}}}{y_{i}^{en/x_{i}}} \qquad (2)$	• •	•	• •	• •	• •	• •	•	•
Generally, the K-volue is given by	• •	•	• •		· ·	• •	•	•
$K_{i} = \frac{y_{i}}{x_{i}} = \frac{\int_{i,v}^{mix} / \varphi_{i,v}^{mix} P}{\int_{i}^{mix} / \psi_{i,v}^{mix} P} = \frac{\int_{i}^{mbx}}{\int_{i}^{mix} / \psi_{i,v}^{mix}} = \frac{\int_{i,v}^{mbx}}{\int_{i}^{mix} / \psi_{i,v}^{mix}} + \frac{\chi_{i,v}^{mbx}}{\int_{i}^{mix} / \psi_{i,v}^{mix}} + K_{i}^{e_{i}}$	• •	•	• •			• •	•	•
An expression for Ki ^{eq} , or the new guess for Ki will be:	• •	•	• •	• •	• •	• •	0	•
$K_{i}^{\text{new}} = K_{i} - \frac{E_{i}^{\text{nix}}}{E_{i}^{\text{nix}}} \qquad \textcircled{13}$	• •	•	• •	• •	• •	• •	•	•
To find find, the following relations were used:	• •	•	• •		• •	• •	•	•
$\int \dot{x}^{i} = \int \dot{x}^{i} \cdot \dot{x}^{i}$	• •	•	• •		• •	• •	0 0	•
$\mathcal{L} = \left\{ \begin{array}{c} \psi \\ \psi $	• •	ø	• •		•••	• •	•	•

	P)	AFH	lr.	İmpi	eme	nti	nG	the.	Lgu	chia	ักธ	in . a).tn	the	L.DC	ovidu	j l co	de	the i	Dutou	d w	IGS:	•	•	•	•	•	•			•	•	•	•
								J		т											. 1														
•	٠	٠	. >	<: [0.39	978	731	0.6	5002	1269]			٠	•	*	٠	•	٠	٠	0		٠	*	•	٠	٠		٠	•	•	٠	•	٠	•
•	٠		.)	/: [/: [0.82 0.23	.755 .426	397 953	د.⊍]	1724	4003	J		•	•	٠	٠	٠	•	٠	•	٠	•	٠			٠	٠	•	٠			٠	•	•	•
•	•	•		_: [/05·	0.76	573	047 240]						•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			. Z	ZV:	[0. 0.96	234 607	209: 219'	55] 7778	3318	8																									
•	٠	٠	. 2	ZL:	0.00	1575	254	9694	i229	28				•	•	٠	٠		٠	•	۰		٠			٠	٠		٠			٠	•	•	
•		•		FV: FL:	[0.8	037 8037	624 622:	ر.ن 1 0.	1634 163	684 4084]		•		•		•	•	•	•	٠		٠	•		٠	٠		•			٠	•	•	•
D	Drohl). F	loch	. Da	·	+?a 1		·	·	· F	าร	•	•	•	٠	•	٠		٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
r	TODI	lem	2: F	iasn	: Ka	ioui	USI	aw	vs. (cubi	CEU	72										•	٠	•		٠	٠		٠			٠	•	•	•
a)	Exp the	plain Raoi	the dif ult's lav	fferen w and	ces in ii) a	the cubic	mode EOS	el equ S.	atior	ns and	algo	rithm	for th	e flasl	h prol	blem	when	solve	ed usi	ng i)	•	•	•	•	•	•	•	•	•	•		•			•
b)) For	the s	same cl	hemic	cal sys	stem	as in	Prob	lem 1 Wh	, dete	rmine	e the	mole fi	raction	n con	nposit Give	ions o	f the	liquic t on t	l and					*						*		*		
	num	nbers	S.	Juseu	on ui	c rea	ourte	, iuw.		at are	uic i	Cluti	very ur	neren		Give	a con	innen	it on i	11030	0	•			٠			٠	٠	٠	٠		٠	•	
•	Ø) [.] 7	The.	Ì	Presil	Ce	i. İ.5	tha	Ļ,	M. (don-	1	الانوا	Nu	of .	the,	Едш	Northern	S 10/	1 (a < <		to	Lini	Í 41	h		tree	an li	1 MA	1. /m		Laler		•	•
).						•:					•0. •	ÿ			:т								~/			V .						•	•
		. 1	The	K-1	valu	e. i:	s.fo	und	usi	y.R	cou	145	Jaw,	and	.we	e do	not	che	ck	that	· f:	mix .v	= f.	mix 1L									•		
		. t	or 1	مارا	j.	11		•		•	j	ı. I. r	ກ	11	. · /			٠		()	. 1	•	i		٠	٠	٠	٠		٠	٠		٠	٠	•
		. 1	ν _, ι	rie i	xiyor	I JN N	", \	ve (Can	say	1µc) p	r Kc	0417	ζ. <i>λ</i>	av,	ve.	rem)he	the	014	er.	(6•p.	•	•	٠		•			•	•	•	•	•
•	b) (Modij	fying	{h	- pi	ogra	λm	giver	in	Prol	shen	1, by	y rem	volni	g.all	SR	K -1	relat	ed p	orts.	, the	e out	puł	kan	res:	•	•			•		•	•	•
•			•									•	. ,	•			•			•	•		•			•	٠					٠		•	
•		•	x: y:	[0.	379: 8136	5825 5597	59 0 75 0	0.62 0.18	:041 634	025]		•	•				•			•	٠		•			٠	•					•		•	·
		٠	۷:	[0.	2774	4101	15]				•	٠		٠	•	٠		•	•		•	•	•		٠	٠	•	•		•	٠	•	٠	•	•
•	•	•	L: VOF	.0] ::[7225 0.25	5898 7741	35] L015	5]			•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•		•	•
•																																			•
•		·1		D.	1		الأسر	L	·	VDF	L	الأما				דע	1	مادم		Ė			•	r	•	•		0'1	•	ŕ	1		٠	•	•
•		·.l	Bing	. KØ	~0N/7	5	lu W	יד, ו	NE.	VÇ1	ei	nign	้า	^{en} f	າ ີ	σκ _ι κ _ι	17	U 150	ge	195 I	ngher	Val	wes	ļù.	pen [.]	tane,	Gh((,/0	mer	là.	hepto	ne	٠	٠	•
•		6	mpor	ing	whi	i.	's.+1	L. M	ost	Corn	ect	iş.	diffic	cult	wit	houb	hav	ing :	the	¢xم	ct s	öluth	ion, l	ru t	gen	ally,	th	R	roulds	lav	v.us	25 V	nore	•	•
	٠			I.	1	CD	V	 	'//	Д.	r				.].	٠	٠		•	•	٠		٠	٠		٠	۰		٠			٠		٠	•
•	•	, ne	simp	rion c	NY LON'	. SK	τ, ·	and	Witt	(Nre	fore	be .	l 265 D	ACCUM	nge.	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
		R	20uH's	Jav	v as	5 U P	us	low	pr	essv	re.s	5, W	e ho	ne	1 6	م., ۱	whic	h is	s re	latin	efely	Jo	~, l	ut	this	0.35	ump	hon	will	CGU	se se	ome	error		•
•	٠	٠	٠		٠	•	٠	٠			•	٠	٠	٠		٠	٠	•	٠	٠			٠			٠	•		٠	•	•		•	٠	
•		•	•	٠	•	•	•		•	•		•		٠	•		٠	•		٠	•		•	•	•	•	•			•		•	٠	•	•
•		٠	•	٠		٠	•	•	٠		٠	۰	٠	٠	•				•			٠	٠		٠	٠		٠		٠	٠		٠	•	•
-	٠		•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•		•	•		•	•	•	•	•
•																																			
•	•			•	•		٠	•	•		•	•												•	•	٠				•			٠	•	•
•	0	•	•	•	•	•	•	•	•	•	•	•	*	٠	٠	÷	٠	•		ø	٠	٠	٠	•	•	•	•	•		•	•	•	•	•	•
•		•		•	•	•	•	•	•	•	•	•	•		•	•	•		•	•	•		•	•		•	•	•		•	•	•	•	•	• • •
* * * *	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• • •
· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• • •