
Residence Time Distribution

TKP4110

Eva Tula Larsen Aunet and Anine Bodsberg

October 2021

1 Introduction and Objectives

In this experiment, the residence time in a real non-reactive system where back-mixing is allowed
will be studied and compared with that of an ideal plug flow reactor with fluid assumed to only
flow in one direction. This will be done by injecting methylene blue into the reactor, and using the
difference in top and bottom sensor voltage to calculate the residence time distribution for three
different concentrations at three different pump rates.

The learning objectives of this experiment are to know how the residence time in a real reactor
differs from that of an ideal plug flow reactor, learn how to translate raw data into a residence time
distribution, present the data in appropriate figures and apply regression techniques to calibrate the
equipment.

2 Theory

The following section is based on the theory from RE9: Residence Time Distribution [1].

In chemical reaction engineering, the residence time describes the time it takes from a small amount
of fluid enters a reactor until it leaves the reactor. For an ideal plug flow reactor, the fluid is assumed
to flow in only one direction. Here, the velocity of the molecules is constant throughout the reactor,
meaning that all molecules share the same residence time. For a real reactor, a portion of the reacted
fluid might intermingle with the unreacted feed. This phenomenon is called back-mixing, and will
cause different molecules to have different residence times, yielding a residence time distribution.
The residence time distribution can be viewed as a probability density distribution, E(t), which can
be calculated from

E(t) =
n̂

n0
, (2.1)

where n̂ is the molar flow of tracer out of the reactor and n0 is the total molar amount of injected
tracer. This equation only applies to non-reactive systems, as n0 is not conserved in reactive systems.
Considering the volumetric flow-rate q and the concentration of the tracer c(t), the molar flows can
be substituted, and equation (2.1) can be rewritten as

E(t) =
qc(t)∫∞

0
qc(t)dt

. (2.2)

Under the assumption of steady state flow conditions, q is constant. Taking q out of the integral,
equation (2.2) can finally be rewritten as

E(t) =
c(t)∫∞

0
c(t)dt

. (2.3)

The distribution E(t) depicts the probability that a tracer molecule spends a time t inside the
reactor [1]. All tracer molecules must eventually have left the reactor as t approaches infinity, meaning
that the probability of a tracer molecule having left the reactor between t = 0 and t = ∞ equals 1.
This is shown mathematically by

∫ ∞

0

E(t)dt = 1. (2.4)

2

The mean residence time t̄ can be calculated from

t̄ =

∫ ∞

0

tE(t)dt. (2.5)

The integrals shown in equation (2.3), (2.4) and (2.5) can be calculated using numerical methods
such as the method of trapezoids or Simpson’s method.

The residence time for an ideal plug flow reactor τ can be calculated from

τ =
Vr

q
, (2.6)

where Vr is the reactor volume.

The voltage of the stream measured by the top (T) and bottom (B) sensor is related to the concen-
tration c of the tracer as

∆UT = βT · c (2.7)

and

∆UB = KB(1− e
(− c

τp,B
)
). (2.8)

Here, ∆UT and ∆UB are the differences in measured voltages at the top sensor and the bottom sensor
respectively to the idle resting values for the respective sensors. This is shown mathematically in
equation (2.9). Further, βT = 0.073, KB = 1.636, τp,B = 14.50, UT,idle = 4.5695 and UB,idle =
4.9012 for this experiment.

∆Ui = Ui,idle − Ui (2.9)

3 Experimental

3.1 Setup

The experimental setup consisted of a tank of deionized water which was pumped through a reactor
and into a waste tank. Two light sensors were placed before and after the reactor. The optical tracer
was injected after the pump, but before the first sensor. A flow sheet of the experimental setup is
presented in figure 3.1.1.

3.2 Residence Time Distribution

Three methylene blue solutions with concentrations of 50.8 mg/L, 87.2 mg/L and 126.8 mg/L were
prepared by weighing salt on an analytical balance, dissolving it in deionized water and diluting the
solution to 250 mL. Approximately 1 mL of the solution was injected quickly into the reactor to
ensure that all molecules entered the system at approximately the same time. This was done three
times for each solution, while keeping the pump rate steady at 400, 800 and 1200 rpm respectively.

3

Figure 3.1.1: Flow sheet of the experimental setup, including a tank of deionized water, a pump, two light sensors,
the point of injection, a reactor and a waste tank.

3.3 Pump Calibration

The pump was calibrated by registering the time it took for the pump to consume a certain volume
of deionized water. This was done twice for pump rates of 400, 800 and 1200 rpm. The volume
consumed and time elapsed was noted in the lab journal, shown in figure B.1.

4 Results

Figure 4.1 shows the response c(t) of the top and bottom sensor for a 50.8mg/L methylene blue
solution at 400 rpm. The injected tracer reaches the bottom sensor first, before it goes into the
reactor and exits through the top sensor. The tracer uses a longer time interval to pass the top
sensor compared to the bottom sensor.

Figure 4.1: The response c(t) of the top and bottom sensor for a 50.8mg/L methylene blue solution at 400 rpm.

4

Figures 4.2, 4.3 and 4.4 show the residence time distribution for three methylene blue solutions with
concentrations of respectively 50.8mg/L, 87.2mg/L and 126.8mg/L at pump speeds of 400 rpm,
800 rpm and 1200 rpm. For each of the graphs, the solution injected at the highest pump rate spent
the shortest time in the reactor, while the solution injected at the lowest pump rate spent the longest
time in the reactor.

Figure 4.2: Residence time distribution from a 50.8mg/L methylene blue solution at three different pump rates.

Figure 4.3: Residence time distribution from a 87.2mg/L methylene blue solution at three different pump rates.

5

Figure 4.4: Residence time distribution from a 126.8mg/L methylene blue solution at three different pump rates.

Figures 4.5, 4.6 and 4.7 show the residence time distribution for three methylene blue solutions with
concentrations of 50.8mg/L, 87.2mg/L and 126.8mg/L at pump speeds of respectively 400 rpm,
800 rpm and 1200 rpm. The residence time distributions line up almost perfectly in all three graphs.

Figure 4.5: Residence time distribution from three methylene blue solutions at 400 rpm.

6

Figure 4.6: Residence time distribution from three methylene blue solutions at 800 rpm.

Figure 4.7: Residence time distribution from three methylene blue solutions at 1200 rpm.

7

Figure 4.8 shows the calibration curve with volumetric flow rate as a function of the pump rate.
This graph was found by measuring the time it took to pump approximately 80mL deionized water
into the reactor at different pump rates and then using linear regression. The regression line was
found to be q = 0.0017x− 0.0405, where x is the pump rate. The calibration curve has an R2-value
of 0.99999, which shows that the regression line fits the six data points from table A.2.1 almost
perfectly.

Figure 4.8: Calibration curve with volumetric flow q as a function of the pump rate.

The mean residence time, t̄, was calculated using equation 2.5 and the python code found in appendix
C. The residence time for an ideal plug flow reactor, τ , was calculated from equation (2.6), and an
example calculation can be found in appendix A.3. The results for both the mean residence time
and the ideal PFR residence time are given in table 4.1. From table 4.1, it is observed that τ is
smaller than t̄ for all pump rates and concentrations. The relationship between τ and t̄ is observed
to stay approximately constant as the pump rate is increased, with t̄ being approximately twice as
big as τ .

Table 4.1: Mean residence time and ideal PFR residence time for different concentrations and pump rates.

Pump rate [rpm] Concentration [mg/L] t̄ [s] τ [s]

400 50.8 141.39 69.8
400 87.2 155.00 69.8
400 126.8 144.20 69.8
800 50.8 59.49 33.8
800 87.2 66.98 33.8
800 126.8 61.40 33.8
1200 50.8 38.86 22.3
1200 87.2 42.91 22.3
1200 126.8 39.36 22.3

8

5 Discussion

The difference in response c(t) of the top and bottom sensor, seen in figure 4.1, suggests that the
tracer spreads in the solvent while going through the reactor. For an ideal plug flow reactor, the
tracer would not spread in the solvent like this because the velocity of the molecules would be
constant throughout the reactor, meaning that all molecules would share the same residence time.
However, the reactor operates under real conditions where back-mixing is allowed. Thus, the fluid
in the reactor intermingles, causing the tracer to spread out and spend more time passing the top
sensor.

The solutions injected at higher pump rates spend a shorter time in the reactor because a higher
pump rate leads to a higher volumetric flow rate, which again leads to a shorter residence time. This
fits well with the results seen in figures 4.2, 4.3 and 4.4. Considering the similar time scales and
the negligible differences between the residence time distributions for the different concentrations in
figures 4.5, 4.6 and 4.7, it is reasonable to assume that the deviations are due to errors. Thus, the
concentration was not found to have any effect on the residence time distribution.

The tracer molecules were observed to spend more time moving through the reactor for the real
reactor model that was used in this experiment, compared to an ideal reactor model. This is
because some tracer molecules undergo the process of back-mixing in a real reactor, causing the
tracer to spread out in the solvent and spending more time going through the reactor. For an ideal
plug flow reactor, however, the fluid is assumed to flow in only one direction, which yields a higher
volumetric flow rate and thus a shorter residence time. When calculating the residence time for an
ideal plug flow reactor, τ , the volumetric flow rate, q, was found using the calibration curve shown
in figure 4.8. As the R2-value of the calibration curve was very close to 1, the volumetric flow rates
were not a significant error source when calculating τ .

The calculations associated with this experiment are based on a couple of assumptions. Firstly,
the system was assumed to be non-reactive. This is a fair assumption, as methylene blue is a non-
reactive substance. Secondly, the system was assumed to operate under steady state flow conditions.
Because the pump rate was kept steady throughout the experiments, this assumption is reasonable.
Finally, the density of the fluid was assumed to be constant. This assumption is also reasonable, as
the system was non-reactive and the temperature was kept constant throughout the experiment.

When weighing out the salt on the analytical balance, there were some uncertainties in the masses,
as it was nearly impossible to weigh out the desired amounts, and also because the scale was hard
to operate. This is a major source of error in the experiment, as it would affect the concentrations
of the solutions, which in turn would affect the residence times.

References
[1] B. Baumgarten. Re9: Residence time distribution. https://folk.ntnu.no/preisig/HAP Speci

als/Felles lab/Experiments/RE9 milli-reactor residence time.pdf, 2021. Accessed:
27.10.2021.

9

A Calculations

A.1 Concentrations of the Solutions

Equation (A.1.1) was used to calculate the concentrations, c, of the solutions.

c =
m

V
(A.1.1)

Here m is the mass and V is the volume. Table A.1.1 shows the mass of methylene blue and volume
water used to obtain the concentrations used in this experiment.

Table A.1.1: Concentrations of the solutions.

Sample m [mg] V [L] c [mg/L]

1 12.7 0.25 50.8
2 21.8 0.25 87.2
3 31.7 0.25 126.8

A.2 Calibration Curve

The measured values for time and volume for each pump rate can be found in table A.2.1, along
with the volumetric flow rates calculated from equation (A.2.1).

q =
∆V

∆t
(A.2.1)

Table A.2.1: Measured data used to find q at different pump rates.

Pump rate [rpm] ∆V [mL] ∆t [s] q [mL/s]

400 77.5 123.40 0.6280
400 81.7 129.60 0.6204
800 83.0 63.78 1.3014
800 80.8 61.97 1.3039
1200 80.6 40.94 1.9688
1200 84.0 42.59 1.9723

A.3 Residence Time for an Ideal Plug Flow Reactor

The residence time for an ideal plug flow reactor τ was found using equation (2.6). The following
calculation shows how τ was determined for the three samples at a pump speed of 400 rpm.

The volumetric flow rate q used in the calculation was determined from the calibration curve shown
in figure 4.8, and found to be 0.63013 mL/s. The reactor volume Vr was 44 mL.

τ400 rpm =
44mL

0.63013mL/s
= 69.8 s

10

A.4 RTD Integrals

By integrating the graphs in python, it was confirmed that they all followed equation (2.4), meaning
that the integrals were all equal to 1. A manual calculation for the 50.8mg/L sample at 400 rpm
was done using the trapezoidal method with three trapezoids. The values used in the calulcations
are found in table A.4.1.

Table A.4.1: Values for t and n̂/n0 used in manual calculation with the trapezoidal method.

i 0 1 2 3

t [s] 0 20 62 242
n̂/n0 [-] 0 0.0180 0.0047 0

Intergrating E(t) from t = 0 to t = ∞ with the trapezoidal method gives:

∫ ∞

0

E(t)dt =
0.0180 + 0

2
· (20− 0) +

0.0047 + 0.0180

2
· (62− 20) +

0 + 0.0047

2
· (242− 62) = 1.0797,

which is close to the real value of 1.

11

B Lab Journal

Figure B.1: Photocopy of the lab journal used during the experiment.

12

C Python Code

"""

23.10.2021

TKP4110 RE9

Anine Bodsberg & Eva Aunet

"""

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import r2_score

x = np.array([400, 400, 800, 800, 1200, 1200])

y = np.array([0.62804, 0.63040, 1.30135, 1.30386, 1.96873, 1.97229])

a, b = np.polyfit(x, y, 1)

y_pred = a*x + b

r2 = round(r2_score(y, y_pred), 5)

plt.plot(x, y, '.', color='black')

plt.plot(x, y_pred, label='y = {:.4f}x {:.4f}'.format(a, b), color='black')

plt.text(448, 1.82, r'R2-value = '+f'{r2}')

plt.xlabel('Pump rate [rpm]')

plt.ylabel(r'Q [mL/s]')

plt.legend()

plt.show()

"""

23.10.2021

TKP4110 RE9

Anine Bodsberg & Eva Aunet

"""

import numpy as np

import matplotlib.pyplot as plt

import csv

import scipy

from scipy import integrate

funksjon som tar ut en liste fra csv-fil

def extractor(fil):

list1 = []

with open(fil) as f:

reader = csv.reader(f)

next(reader) # skip header

data = [r for r in reader]

for i in data:

list1.append(i)

return list1

funksjon som lager lister med tid og spenning for topp- og bunnsensor

def sorting(list2):

ut = [] # spenning toppsensor

tt = [] # tid toppsensor

ub = [] # spenning bunnsensor

13

tb = [] # tid bunnsensor

for k in range(2, 6): # tar ikke med kolonnene for rpm

for i in range(0, len(list2)):

if k == 2:

if list2[i][k] != 'NA':

tt.append(float(list2[i][k]))

if k == 3:

if list2[i][k] != 'NA':

ut.append(float(list2[i][k]))

if k == 4:

if list2[i][k] != 'NA':

tb.append(float(list2[i][k]))

if k == 5:

if list2[i][k] != 'NA':

ub.append(float(list2[i][k]))

return tt, ut, tb, ub

finner konsentrasjonen i toppsensor og setter tiden den entrer bunnsensor som null

def ctop(u_top, t_top, u_btm, t_btm):

ct = []

t = []

bt = 0.0730

Ut_idle = 4.5695

Kb = 1.636

Ub_idle = 4.9012

tp = 14.50

t0 = 0

if t0 == 0: # finner tiden det entrer bunnsensoren

for i in range(0, len(u_btm)):

if t0 == 0:

deltaV = Ub_idle - u_btm[i]

cons = -tp * np.log(1 - (deltaV / Kb))

if cons > 0.01:

t0 = t_btm[i]

for i in range(0, len(u_top)):

if t_top[i] >= t0:

deltaV = Ut_idle - u_top[i]

c = deltaV / bt

if c < 0:

ct.append(0)

else:

ct.append(c)

t.append(t_top[i] - t0)

return ct, t

finner konsentrasjonen i bunnsensor og setter tiden den entrer bunnsensor som null

def cbtm(u_btm, t_btm):

cb = []

tb = []

t0 = 0

Kb = 1.636

Ub_idle = 4.9012

tp = 14.50

14

if t0 == 0: # finner tiden det entrer bunnsensoren

for i in range(0, len(u_btm)):

if t0 == 0:

deltaV = Ub_idle - u_btm[i]

cons = -tp * np.log(1 - (deltaV / Kb))

if cons > 0.01:

t0 = t_btm[i]

for i in range(0, len(u_btm)):

deltaV = Ub_idle - u_btm[i]

c = -tp * np.log(1 - (deltaV / Kb))

if c < 0:

cb.append(0)

else:

cb.append(c)

tb.append(t_btm[i] - t0)

return cb, tb

lager funksjon for E

def E(integral, concentration):

E_list = []

for i in range(0, len(concentration)):

Ee = concentration[i] / integral[-1]

E_list.append(Ee)

return E_list

liste med alle filnavnene

n = ['sample1_400rpm.csv', 'sample1_800rpm.csv', 'sample1_1200rpm.csv',

'sample2_400rpm.csv', 'sample2_800rpm.csv', 'sample2_1200rpm.csv',

'sample3_400rpm.csv', 'sample3_800rpm.csv', 'sample3_1200rpm.csv']

funksjon som fikser riktig label på grafene. k = det som holdes konstant (kons eller rpm)

def name(k, filnavn):

if k == 1: # konsentrasjon er kontant

if '400' in filnavn:

na = 'rpm 400'

elif '800' in filnavn:

na = 'rpm 800'

elif '1200' in filnavn:

na = 'rpm 1200'

elif k == 2: # pump rate er konstant

if 'sample1' in filnavn:

na = r'c = 50.8 mg/L'

elif 'sample2' in filnavn:

na = r'c = 87.2 mg/L'

elif 'sample3' in filnavn:

na = r'c = 126.8 mg/L'

return na

funksjon som setter alt sammen og gir ønsket output

(mean residence time, integral av alle E(t) og printer grafene)

def main(filene):

15

list1 = extractor(filene[0])

tt, ut, tb, ub = sorting(list1)

ytc, t_top = ctop(ut, tt, ub, tb) # konsentrasjon i toppsensor med tider

ybc, t_btm = cbtm(ub, tb) # samme for bunnkonsentrasjonen

xcb = np.array(t_btm)

ybc = np.array(ybc)

xct = np.array(t_top)

ytc = np.array(ytc)

plt.plot(xct, ytc, linewidth=2.0, label=r"$c_{top}\,(t)$")

plt.plot(xcb, ybc, linewidth=2.0, label=r"$c_{btm}\,(t)$")

plt.xlabel(r"t [s]", fontsize=12)

plt.ylabel(r"c [mg/L]", fontsize=12)

plt.xlim(-20, 300)

plt.ylim(0, 25)

plt.legend()

plt.show()

counter = 0

for fil in filene:

list2 = extractor(fil) # liste fra csv-fil

tt, ut, tb, ub = sorting(list2) # tid og spenning for topp- og bunnsensor

ytc, t_top = ctop(ut, tt, ub, tb) # konsentrasjon i toppsensor med tider

integral = scipy.integrate.cumtrapz(ytc, t_top) # tot integral av konsentrasjoner

e = E(integral, ytc) # E(t)

xct = np.array(t_top)

yct = np.array(e)

if counter != 3:

plt.plot(xct, yct, linewidth=2.0, label=name(1, fil))

t_mean = np.trapz(e * xct, xct) # mean residence time

print(fil, 'har t på', t_mean)

inte = np.trapz(e, xct) # integralet av hele E(t)

print('Integralet av hele E er', inte)

counter += 1

if counter == 3:

counter = 0

plt.xlabel(r't [s]', fontsize=12)

plt.ylabel(r'$\^n/n_0$ [-]', fontsize=12)

plt.xlim(0, 300)

plt.ylim(0, 0.09)

plt.legend()

plt.show()

for i in range(0, 3):

for k in range(0, 3):

list2 = extractor(filene[i + k * 3]) # liste fra csv-fil

tt, ut, tb, ub = sorting(list2) # tid og spenning for topp- og bunnsensor

ytc, t_top = ctop(ut, tt, ub, tb) # konsentrasjon i toppsensor med tider

integral = scipy.integrate.cumtrapz(ytc, t_top) # tot integral av konsentrasjoner

e = E(integral, ytc) # E(t)

xct = np.array(t_top)

yct = np.array(e)

if counter != 3:

plt.plot(xct, yct, linewidth=2.0, label=name(2, filene[i + k * 3]))

counter += 1

if counter == 3:

counter = 0

plt.xlabel(r't [s]', fontsize=12)

16

plt.ylabel(r'$\^n/n_0$ [-]', fontsize=12)

plt.xlim(0, 300)

plt.ylim(0, 0.09)

plt.legend()

plt.show()

main(n)

17

