
Transient temperature one-dimensional profile 
 

Consider the problem of a large cylindrical tank of water. At its initial conditions, the whole 

tank is at 25 °C and there is no heat flowing throughout the liquid. However, at t > 0, the surface 

of the tank suddenly experiences an instantaneous temperature increase to T = 80 °C (for 

example, due to a strongly exothermic reaction in the interface or through the flushing of hot 

steam above the tank). This temperature difference will generate an immediate flux of heat 

transfer between the surface of the tank and its bulk. 

 

 

Figure 1. Schematic drawing of the water tank in its initial and in its transient conditions 

Let us consider the transient energy balance that applies for an infinitesimally thin slab of 

liquid. For this layer, the variation of internal energy will be equal to the amount of heat 

entering from above minus the amount of heat leaving from the bottom. 

 

 
 

Figure 2. Control volume of a very thin slab of liquid for the transient energy balance 

If Ei is the volumetric internal energy of each slab i, then the energy balance above translates 

into the equation below: 
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Dividing both sides of the equation above by the volume of the slab: 
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If the liquid has constant density and constant heat capacity, the left-hand side of the equation 

above can be written as: 
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Finally, substitution of Fourier’s law of conductivity in the right-hand side of the equation 

above will generate Eq. (4). For this problem, you can neglect the effect of convective heat 

transfer. 
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For an infinitesimally small Δz, the equation above will reduce to the differential equation 

shown below: 
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The equation above is a partial differential equation whose analytical solution can be obtained 

through a bit of mathematical ingenuity and some labor. However, we will try to come up with 

a numerical solution for this scenario. This will illustrate how useful and practical it is to have 

knowledge of a programming language plus some numerical methods.  

 

Let us start with the forward Euler’s method for integrating differential equations. Roughly 

speaking, Euler’s method can be written as below: 
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That is to say, the temperature of each layer i at each time t = k∙Δt can be approximated by 

numerically adding the temperature of that same layer in a previous instant to the temporal 

derivative of T (calculated at that previous instant) times the time step Δt. This is extremely 

convenient for us, since we already know the temperature of all layers at t = 0 (they were T = 

25 °C as defined in the first paragraph of this exercise!). Euler’s method will often be a practical 

alternative when integrating a time derivative, for time only moves forward. If you are 

interested, you can read more about Euler’s method in Wikipedia – 

https://en.wikipedia.org/wiki/Euler_method 

 

As for the numerical values for the temporal derivatives of T, they can be calculated for each 

slab i as per Eq. (4) shown before, that is: 

https://en.wikipedia.org/wiki/Euler_method
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This numerical method is called finite difference, of which there are several variants. In the 

expression above, the variant of choice is second-order central. You can read more about finite 

differences in Wikipedia – https://en.wikipedia.org/wiki/Finite_difference 

 

That means that, for each time k∙Δt and slab i, the time derivative can be numerically 

approximated. Of course, solving this derivative also demands that one knows the temperatures 

at the two extremities of the space we are integrating in at all times. This is quite simple. In the 

upper extremity, where z = 0, the temperature of the liquid surface is defined by the problem 

as 80 °C. At the bottom, if we allow for a space sufficiently great z = H, the temperature will 

be the same as it was before the heating began, i.e. the bulk temperature will be 25 °C. 

 

It is incredibly easy to write this algorithm in Python. As a matter of fact, we have written it 

for you. It is as below: 

 
#------------------------------------------------------------------------------ 

import numpy 

import matplotlib.pyplot as plt 

import math 

#------------------------------------------------------------------------------ 

 

H = 0.025   # depth of penetration for simulation, m 

n = 25    # number of nodes for finite differences 

T0 = 298.15   # temperature at t = 0, K 

T_surface = 353.15  # temperature at the surface of the liquid, K 

T_bulk = 298.15  # temperature at the bulk of the liquid, K 

dz = H/n   # delta z for finite differences 

k = 0.6   # thermal conductivity of water, W/(m*K) 

rho = 1000   # density of water, kg/m3 

Cp = 4200   # heat capacity of water, J/(kg*K) 

t_final = 120   # total time of simulation, s 

dt = 0.5   # delta t for Euler method 

 

z = numpy.linspace(dz/2,H-dz/2,n) 

t = numpy.arange(0,t_final+dt,dt) 

T = numpy.ones(n)*T0  

dTdt = numpy.empty(n) 

Q = numpy.empty(n) 

 

for j in range(1,len(t)): 

 plt.clf() 

 for i in range(1,n-1): 

  dTdt[i] = -(k/(rho*Cp))*((T[i]-T[i-1])/dz**2)+(k/(rho*Cp))*((T[i+1]-

T[i])/dz**2) 

 dTdt[0] = -(k/(rho*Cp))*((T[0]-T_surface)/dz**2)+(k/(rho*Cp))*((T[1]-

T[0])/dz**2) 

 dTdt[n-1] = -(k/(rho*Cp))*((T[n-1]-T[n-2])/dz**2)+(k/(rho*Cp))*((T_bulk-T[n-

1])/dz**2) 

 T = T+dTdt*dt 

 

 plt.figure(1) 

 plt.plot(z,T) 

https://en.wikipedia.org/wiki/Finite_difference


 plt.axis([0, H, 273.15, 373.15])  

 plt.xlabel('Depth / m') 

 plt.ylabel('Temperature / K') 

 plt.text(0.015,350,'t = ' + str(t[j]) + ' s') 

 plt.show() 

 plt.pause(0.01) 

 

You are invited to copy and paste this code in your compiler of choice. If you do so, you will 

see the development of a temperature profile between the liquid surface and the liquid bulk. 

For this example, the temperature at the surface was fixed at 80 °C. The number of nodes for 

the finite difference method was fixed at n = 25, the timestep Δt was fixed at 0.5 s, and the 

profile develops until t = 120 seconds.  

 

 
Figure 3. Temperature profile in the liquid after 120 seconds 

 

You might be asking yourself: what is the influence of H in this algorithm? Ideally, none. If H 

is big enough, it does not matter if we set H = 2.5 cm, 3.0 cm or 5.0 cm. Higher values of H 

will however mean that we have less calculations being made close to the gas-liquid interface, 

which is where they really matter (since it is there that we have the largest temperature 

variations). It is not a good idea to simply fix a very large H. On the other hand, a very small 

H will mean that we risk not giving the penetration profile enough space to develop, resulting 

in an unrealistic boundary condition. 


