
Transient temperature one-dimensional profile

Consider the problem of a large cylindrical tank of water. At its initial conditions, the whole

tank is at 25 °C and there is no heat flowing throughout the liquid. However, at t > 0, the surface

of the tank suddenly experiences an instantaneous temperature increase to T = 80 °C (for

example, due to a strongly exothermic reaction in the interface or through the flushing of hot

steam above the tank). This temperature difference will generate an immediate flux of heat

transfer between the surface of the tank and its bulk.

Figure 1. Schematic drawing of the water tank in its initial and in its transient conditions

Let us consider the transient energy balance that applies for an infinitesimally thin slab of

liquid. For this layer, the variation of internal energy will be equal to the amount of heat

entering from above minus the amount of heat leaving from the bottom.

Figure 2. Control volume of a very thin slab of liquid for the transient energy balance

If Ei is the volumetric internal energy of each slab i, then the energy balance above translates

into the equation below:

𝑑𝐸𝑖
𝑑𝑡

∙ (
𝜋 ∙ 𝐷2

4
∙ ∆𝑧)

⏟
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

= 𝑄̇𝑖−1 ∙
𝜋 ∙ 𝐷2

4⏟
𝑐𝑟𝑜𝑠𝑠 𝑎𝑟𝑒𝑎

− 𝑄̇𝑖 ∙
𝜋 ∙ 𝐷2

4⏟
𝑐𝑟𝑜𝑠𝑠 𝑎𝑟𝑒𝑎

(1)

Dividing both sides of the equation above by the volume of the slab:

𝑑𝐸𝑖
𝑑𝑡

=
𝑄̇𝑖−1 − 𝑄̇𝑖

∆𝑧
(2)

If the liquid has constant density and constant heat capacity, the left-hand side of the equation

above can be written as:

𝜌 ∙ 𝐶𝑃 ∙
𝜕𝑇𝑖
𝜕𝑡
=
𝑄̇𝑖−1 − 𝑄̇𝑖
∆𝑧

(3)

Finally, substitution of Fourier’s law of conductivity in the right-hand side of the equation

above will generate Eq. (4). For this problem, you can neglect the effect of convective heat

transfer.

𝜌 ∙ 𝐶𝑃 ∙
𝜕𝑇𝑖
𝜕𝑡
=
−𝑘 ∙

∆𝑇
∆𝑧
|
𝑖−1
+ 𝑘 ∙

∆𝑇
∆𝑧
|
𝑖

∆𝑧
(4)

For an infinitesimally small Δz, the equation above will reduce to the differential equation

shown below:

𝜌 ∙ 𝐶𝑃 ∙
𝜕𝑇

𝜕𝑡
= 𝑘 ∙

𝜕2𝑇

𝜕𝑥2
(5)

𝜕𝑇

𝜕𝑡
=

𝑘

𝜌 ∙ 𝐶𝑃
∙
𝜕2𝑇

𝜕𝑥2
(6)

The equation above is a partial differential equation whose analytical solution can be obtained

through a bit of mathematical ingenuity and some labor. However, we will try to come up with

a numerical solution for this scenario. This will illustrate how useful and practical it is to have

knowledge of a programming language plus some numerical methods.

Let us start with the forward Euler’s method for integrating differential equations. Roughly

speaking, Euler’s method can be written as below:

𝑇𝑖|𝑘∙∆𝑡 = 𝑇𝑖|(𝑘−1)∙∆𝑡 +
𝜕𝑇𝑖
𝜕𝑡
|
(𝑘−1)∙∆𝑡

∙ ∆𝑡 (7)

That is to say, the temperature of each layer i at each time t = k∙Δt can be approximated by

numerically adding the temperature of that same layer in a previous instant to the temporal

derivative of T (calculated at that previous instant) times the time step Δt. This is extremely

convenient for us, since we already know the temperature of all layers at t = 0 (they were T =

25 °C as defined in the first paragraph of this exercise!). Euler’s method will often be a practical

alternative when integrating a time derivative, for time only moves forward. If you are

interested, you can read more about Euler’s method in Wikipedia –

https://en.wikipedia.org/wiki/Euler_method

As for the numerical values for the temporal derivatives of T, they can be calculated for each

slab i as per Eq. (4) shown before, that is:

https://en.wikipedia.org/wiki/Euler_method

𝜕𝑇𝑖
𝜕𝑡
= −

𝑘

𝜌 ∙ 𝐶𝑃
∙
∆𝑇

∆𝑧2
|
𝑖−1
+

𝑘

𝜌 ∙ 𝐶𝑃
∙
∆𝑇

∆𝑧2
|
𝑖

(8)

𝜕𝑇𝑖
𝜕𝑡
≈ −

𝑘

𝜌 ∙ 𝐶𝑃
∙
𝑇𝑖 − 𝑇𝑖−1
∆𝑧2

+
𝑘

𝜌 ∙ 𝐶𝑃
∙
𝑇𝑖+1 − 𝑇𝑖
∆𝑧2

(9)

𝜕𝑇𝑖
𝜕𝑡
≈

𝑘

𝜌 ∙ 𝐶𝑃
∙ (
𝑇𝑖+1 − 𝑇𝑖−1

∆𝑧2
) (10)

This numerical method is called finite difference, of which there are several variants. In the

expression above, the variant of choice is second-order central. You can read more about finite

differences in Wikipedia – https://en.wikipedia.org/wiki/Finite_difference

That means that, for each time k∙Δt and slab i, the time derivative can be numerically

approximated. Of course, solving this derivative also demands that one knows the temperatures

at the two extremities of the space we are integrating in at all times. This is quite simple. In the

upper extremity, where z = 0, the temperature of the liquid surface is defined by the problem

as 80 °C. At the bottom, if we allow for a space sufficiently great z = H, the temperature will

be the same as it was before the heating began, i.e. the bulk temperature will be 25 °C.

It is incredibly easy to write this algorithm in Python. As a matter of fact, we have written it

for you. It is as below:

#--

import numpy

import matplotlib.pyplot as plt

import math

#--

H = 0.025 # depth of penetration for simulation, m

n = 25 # number of nodes for finite differences

T0 = 298.15 # temperature at t = 0, K

T_surface = 353.15 # temperature at the surface of the liquid, K

T_bulk = 298.15 # temperature at the bulk of the liquid, K

dz = H/n # delta z for finite differences

k = 0.6 # thermal conductivity of water, W/(m*K)

rho = 1000 # density of water, kg/m3

Cp = 4200 # heat capacity of water, J/(kg*K)

t_final = 120 # total time of simulation, s

dt = 0.5 # delta t for Euler method

z = numpy.linspace(dz/2,H-dz/2,n)

t = numpy.arange(0,t_final+dt,dt)

T = numpy.ones(n)*T0

dTdt = numpy.empty(n)

Q = numpy.empty(n)

for j in range(1,len(t)):

 plt.clf()

 for i in range(1,n-1):

 dTdt[i] = -(k/(rho*Cp))*((T[i]-T[i-1])/dz**2)+(k/(rho*Cp))*((T[i+1]-

T[i])/dz**2)

 dTdt[0] = -(k/(rho*Cp))*((T[0]-T_surface)/dz**2)+(k/(rho*Cp))*((T[1]-

T[0])/dz**2)

 dTdt[n-1] = -(k/(rho*Cp))*((T[n-1]-T[n-2])/dz**2)+(k/(rho*Cp))*((T_bulk-T[n-

1])/dz**2)

 T = T+dTdt*dt

 plt.figure(1)

 plt.plot(z,T)

https://en.wikipedia.org/wiki/Finite_difference

 plt.axis([0, H, 273.15, 373.15])

 plt.xlabel('Depth / m')

 plt.ylabel('Temperature / K')

 plt.text(0.015,350,'t = ' + str(t[j]) + ' s')

 plt.show()

 plt.pause(0.01)

You are invited to copy and paste this code in your compiler of choice. If you do so, you will

see the development of a temperature profile between the liquid surface and the liquid bulk.

For this example, the temperature at the surface was fixed at 80 °C. The number of nodes for

the finite difference method was fixed at n = 25, the timestep Δt was fixed at 0.5 s, and the

profile develops until t = 120 seconds.

Figure 3. Temperature profile in the liquid after 120 seconds

You might be asking yourself: what is the influence of H in this algorithm? Ideally, none. If H

is big enough, it does not matter if we set H = 2.5 cm, 3.0 cm or 5.0 cm. Higher values of H

will however mean that we have less calculations being made close to the gas-liquid interface,

which is where they really matter (since it is there that we have the largest temperature

variations). It is not a good idea to simply fix a very large H. On the other hand, a very small

H will mean that we risk not giving the penetration profile enough space to develop, resulting

in an unrealistic boundary condition.

